SN74GTLP1394 2-Bit LVTTL-to-GTLP Adj-Edge-Rate Bus Xcvr w/Split LVTTL Port, Feedback Path, & Selectable Polarity |

SN74GTLP1394 (ACTIVE) 2-Bit LVTTL-to-GTLP Adj-Edge-Rate Bus Xcvr w/Split LVTTL Port, Feedback Path, & Selectable Polarity

2-Bit LVTTL-to-GTLP Adj-Edge-Rate Bus Xcvr w/Split LVTTL Port, Feedback Path, & Selectable Polarity - SN74GTLP1394


The SN74GTLP1394 is a high-drive, 2-bit, 3-wire bus transceiver that provides LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. It allows for transparent and inverted transparent modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels, and is especially designed to work with the Texas Instruments 1394 backplane physical-layer controllers. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC™ circuitry, and TI-OPC™ circuitry. Improved GTLP OEC and TI-OPC circuitry minimizes bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 .

GTLP is the TI derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP1394 is given only at the preferred higher noise margin GTLP, but the user has the flexibility of using this device at either GTL (VTT = 1.2 V and VREF = 0.8 V) or GTLP (VTT = 1.5 V and VREF = 1 V) signal levels.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and are compatible with TTL and 5-V CMOS inputs. VREF is the B port differential input reference voltage.

This device is fully specified for live-insertion applications using Ioff, power-up 3-state, and BIAS VCC. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS VCC circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits the overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC\). Changing the ERC\ input voltage between GND and VCC adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When VCC is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (OE\) input should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.


  • TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes
  • OEC™ Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
  • Bidirectional Interface Between GTLP Signal Levels and LVTTL Logic Levels
  • Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
  • LVTTL Interfaces Are 5-V Tolerant
  • High-Drive GTLP Outputs (100 mA)
  • LVTTL Outputs (–24 mA/24 mA)
  • Variable Edge-Rate Control (ERC\) Input Selects GTLP Rise and Fall Times for Optimal Data-Transfer Rate and Signal Integrity in Distributed Loads
  • Ioff, Power-Up 3-State, and BIAS VCC Support Live Insertion
  • Polarity Control Selects True or Complementary Outputs
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

OEC, TI, and TI-OPC are trademarks of Texas Instruments.


Compare all products in GTL/TTL/BTL/ECL transceiver/translator Email Download to Excel
Part number Order Technology Family Bits (#) Voltage (Nom) (V) IOH (Max) (mA) IOL (Max) (mA) F @ nom voltage (Max) (MHz) ICC @ nom voltage (Max) (mA) tpd @ nom Voltage (Max) (ns) Schmitt trigger Operating temperature range (C) Package Group
SN74GTLP1394 Order now GTLP     2     3.3     -24     24     175     20     8.6     No     -40 to 85     SOIC | 16
TSSOP | 16
TVSOP | 16