Product details

Technology Family HCT Supply voltage (Min) (V) 4.5 Supply voltage (Max) (V) 5.5 Number of channels (#) 8 IOL (Max) (mA) 6 IOH (Max) (mA) -6 ICC (Max) (uA) 80 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Very high speed (tpd 5-10ns), Input clamp diode Rating Catalog
Technology Family HCT Supply voltage (Min) (V) 4.5 Supply voltage (Max) (V) 5.5 Number of channels (#) 8 IOL (Max) (mA) 6 IOH (Max) (mA) -6 ICC (Max) (uA) 80 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Very high speed (tpd 5-10ns), Input clamp diode Rating Catalog
PDIP (N) 20 229 mm² 24.33 x 9.4 SOIC (DW) 20 132 mm² 12.8 x 10.3
  • Operating Voltage Range of 4.5 V to 5.5 V
  • Low Power Consumption, 80-µA Max ICC
  • Typical tpd = 12 ns
  • ±6-mA Output Drive at 5 V
  • Low Input Current of 1 µA Max
  • Inputs Are TTL-Voltage Compatible
  • High-Current 3-State Outputs Interface Directly With System Bus or Can Drive Up To 15 LSTTL Loads
  • Data Flow-Through Pinout (All Inputs on Opposite Side From Outputs)

  • Operating Voltage Range of 4.5 V to 5.5 V
  • Low Power Consumption, 80-µA Max ICC
  • Typical tpd = 12 ns
  • ±6-mA Output Drive at 5 V
  • Low Input Current of 1 µA Max
  • Inputs Are TTL-Voltage Compatible
  • High-Current 3-State Outputs Interface Directly With System Bus or Can Drive Up To 15 LSTTL Loads
  • Data Flow-Through Pinout (All Inputs on Opposite Side From Outputs)

These octal buffers and line drivers are designed to have the performance of the ’HCT240 devices and a pinout with inputs and outputs on opposite sides of the package. This arrangement greatly facilitates printed circuit board layout.

The 3-state control gate is a 2-input NOR. If either output-enable (OE1\ or OE2\) input is high, all eight outputs are in the high-impedance state. The ’HCT540 devices provide inverted data at the outputs.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These octal buffers and line drivers are designed to have the performance of the ’HCT240 devices and a pinout with inputs and outputs on opposite sides of the package. This arrangement greatly facilitates printed circuit board layout.

The 3-state control gate is a 2-input NOR. If either output-enable (OE1\ or OE2\) input is high, all eight outputs are in the high-impedance state. The ’HCT540 devices provide inverted data at the outputs.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 13
Type Title Date
* Data sheet SN54HCT540, SN74HCT540 datasheet (Rev. C) 18 Mar 2003
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
More literature Logic Cross-Reference (Rev. A) 07 Oct 2003
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note Designing With Logic (Rev. C) 01 Jun 1997
Application note SN54/74HCT CMOS Logic Family Applications and Restrictions 01 May 1996
Application note Using High Speed CMOS and Advanced CMOS in Systems With Multiple Vcc 01 Apr 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

14-24-LOGIC-EVM — Generic Logic EVM Supporting 14 through 24 Pin PW, DB, D, DW, NS, P, N, and DGV Packages

This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
In stock
Limit: 5
Simulation model

SN74HCT540 Behavioral SPICE Model

SCLM196.ZIP (7 KB) - PSpice Model
Package Pins Download
PDIP (N) 20 View options
SOIC (DW) 20 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos