SN74LV541AT

ACTIVE

8-ch, 4.5-V to 5.5-V buffers with TTL-compatible CMOS inputs and 3-state outputs

Top

Product details

Parameters

Technology Family LV-AT Supply voltage (Min) (V) 4.5 Supply voltage (Max) (V) 5.5 Number of channels (#) 8 IOL (Max) (mA) 16 ICC (Max) (uA) 20 IOH (Max) (mA) -16 Input type TTL-Compatible CMOS Output type 3-State Features Balanced outputs, Very high speed (tpd 5-10ns), Partial power down (Ioff), Over-voltage tolerant inputs Rating Catalog open-in-new Find other Noninverting buffers & drivers

Package | Pins | Size

SOIC (DW) 20 132 mm² 12.8 x 10.3 SOP (NS) 20 98 mm² 12.6 x 7.8 SSOP (DB) 20 38 mm² 5.3 x 7.2 TSSOP (PW) 20 42 mm² 6.5 x 6.4 TVSOP (DGV) 20 32 mm² 5 x 6.4 VQFN (RGY) 20 16 mm² 3.5 x 4.5 open-in-new Find other Noninverting buffers & drivers

Features

  • Inputs Are TTL-Voltage Compatible
  • 4.5-V to 5.5-V VCC Operation
  • Typical tpd of 4 ns at 5 V
  • Typical VOLP (Output Ground Bounce)
    <0.8 V at VCC = 5 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
    >2.3 V at VCC = 5 V, TA = 25°C
  • Supports Mixed-Mode Voltage Operation on All Ports
  • Ioff Supports Partial-Power-Down Mode Operation
  • Latch-Up Performance Exceeds 250 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)

open-in-new Find other Noninverting buffers & drivers

Description

The SN74LV541AT is designed for 4.5-V to 5.5-V VCC operation. The inputs are TTL-voltage compatible, which allows them to be interfaced with bipolar outputs and 3.3-V devices. The device also can be used to translate from 3.3 V to 5 V.

This device is ideal for driving bus lines or buffer memory address registers. It features inputs and outputs on opposite sides of the package to facilitate printed circuit board layout.

The 3-state control gate is a two-input AND gate with active-low inputs so that, if either output-enable (OE1 or OE2) input is high, all corresponding outputs are in the high-impedance state. The outputs provide noninverted data when they are not in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE shall be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

open-in-new Find other Noninverting buffers & drivers
Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet SN74LV541AT datasheet (Rev. B) Jul. 17, 2013

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARD Download
document-generic User guide
10
Description
This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
Features
  • Board design allows for versatility in evaluation
  • Supports a wide-range of logic devices
EVALUATION BOARD Download
document-generic User guide
20
Description
Flexible EVM designed to support any logic or translation device that has a BQA, BQB, RGY (14-24 pin), RSV, RJW, or RHL package.
Features
  • Board design allows for versatility in evaluation
  • Supports a wide-range of logic and translation devices with included dual supply support
  • Board has 9 sections that can be broken apart for a smaller form factor

Design tools & simulation

SIMULATION MODEL Download
SCEM454.ZIP (16 KB) - IBIS Model
SIMULATION MODEL Download
SCEM648.ZIP (7 KB) - PSpice Model

CAD/CAE symbols

Package Pins Download
SO (NS) 20 View options
SOIC (DW) 20 View options
SSOP (DB) 20 View options
TSSOP (PW) 20 View options
TVSOP (DGV) 20 View options
VQFN (RGY) 20 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos