SN74LVC04A-Q1

ACTIVE

Automotive Catalog Hex Inverter

Top
Automotive Catalog Hex Inverter

SN74LVC04A-Q1

ACTIVE

Product details

Parameters

Technology Family LVC VCC (Min) (V) 2 VCC (Max) (V) 3.6 Channels (#) 6 IOL (Max) (mA) 24 IOH (Max) (mA) -24 ICC (Max) (uA) 10 Input type Standard CMOS Output type Push-Pull Features Balanced outputs, Very high speed (tpd 5-10ns), Partial power down (Ioff), Over-voltage tolerant inputs Data rate (Mbps) 200 Rating Automotive open-in-new Find other Inverting buffer/driver

Package | Pins | Size

SOIC (D) 14 52 mm² 8.65 x 6 TSSOP (PW) 14 32 mm² 5 x 6.4 open-in-new Find other Inverting buffer/driver

Features

  • Qualified for Automotive Applications
  • ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
  • Operates From 2 V to 3.6 V
  • Inputs Accept Voltages to 5.5 V
  • Max tpd of 4.5 ns at 3.3 V
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • Typical VOHV (Output VOH Undershoot)
       >2 V at VCC = 3.3 V, TA = 25°C

open-in-new Find other Inverting buffer/driver

Description

The SN74LVC04A hex inverter contains six independent inverters designed for 2.7-V to 3.6-V VCC operation.

The device performs the Boolean function Y = A

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

open-in-new Find other Inverting buffer/driver
Download

Technical documentation

= Top documentation for this product selected by TI
No results found. Please clear your search and try again. View all 30
Type Title Date
* Datasheet Hex Inverter datasheet (Rev. B) Feb. 12, 2008
Selection guide Little Logic Guide 2018 (Rev. G) Jul. 06, 2018
Selection guide Logic Guide (Rev. AB) Jun. 12, 2017
Application note How to Select Little Logic (Rev. A) Jul. 26, 2016
Application note Implications of Slow or Floating CMOS Inputs (Rev. D) Jun. 23, 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) Dec. 02, 2015
More literature Automotive Logic Devices Brochure Aug. 27, 2014
User guide LOGIC Pocket Data Book (Rev. B) Jan. 16, 2007
More literature Design Summary for WCSP Little Logic (Rev. B) Nov. 04, 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection Jul. 08, 2004
Application note Selecting the Right Level Translation Solution (Rev. A) Jun. 22, 2004
User guide Signal Switch Data Book (Rev. A) Nov. 14, 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits Nov. 06, 2003
More literature Logic Cross-Reference (Rev. A) Oct. 07, 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) Dec. 18, 2002
Application note Texas Instruments Little Logic Application Report Nov. 01, 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes Aug. 29, 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards Jun. 13, 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) May 22, 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices May 10, 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS Mar. 27, 2002
More literature Military Low Voltage Solutions Apr. 04, 2001
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices Dec. 01, 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) Aug. 01, 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) Jun. 01, 1997
Application note LVC Characterization Information Dec. 01, 1996
Application note Input and Output Characteristics of Digital Integrated Circuits Oct. 01, 1996
Application note Live Insertion Oct. 01, 1996
User guide Low-Voltage Logic (LVC) Designer's Guide Sep. 01, 1996
Application note Understanding Advanced Bus-Interface Products Design Guide May 01, 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARD Download
10
Description
This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
Features
  • Board design allows for versatility in evaluation
  • Supports a wide-range of logic devices

Design tools & simulation

SIMULATION MODEL Download
SCAM116.ZIP (7 KB) - PSpice Model

CAD/CAE symbols

Package Pins Download
SOIC (D) 14 View options
TSSOP (PW) 14 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos