Enhanced product 6-ch, 2-V to 3.6-V inverters with Schmitt-Trigger inputs
Product details
Parameters
Package | Pins | Size
Features
- Controlled Baseline
- One Assembly/Test Site, One Fabrication Site
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree(1)
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Operates From 2 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max tpd of 6.4 ns at 3.3 V
- Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 3.3 V, TA = 25°C
- Typical VOHV (Output VOH Undershoot) >2 V at VCC = 3.3 V, TA = 25°C
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
(1)Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.
Description
The SN74LVC14A hex Schmitt-trigger inverter is designed for 2.7-V to 3.6-V VCC operation.
The device contains six independent inverters and performs the Boolean function Y = A.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.
Technical documentation
Design & development
For additional terms or required resources, click any title below to view the detail page where available.CAD/CAE symbols
Package | Pins | Download |
---|---|---|
SOIC (D) | 14 | View options |
TSSOP (PW) | 14 | View options |
Ordering & quality
- RoHS
- REACH
- Device marking
- Lead finish/Ball material
- MSL rating/Peak reflow
- MTBF/FIT estimates
- Material content
- Qualification summary
- Ongoing reliability monitoring
Support & training
TI E2E™ forums with technical support from TI engineers
Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.
If you have questions about quality, packaging or ordering TI products, see TI support.