SN74LVTH244A

ACTIVE

3.3-V ABT Octal Buffers/Drivers With 3-State Outputs

Top
3.3-V ABT Octal Buffers/Drivers With 3-State Outputs

SN74LVTH244A

ACTIVE

Product details

Parameters

Technology Family LVT VCC (Min) (V) 2.7 VCC (Max) (V) 3.6 Channels (#) 8 IOL (Max) (mA) 64 IOH (Max) (mA) -32 Input type TTL-Compatible CMOS Output type 3-State Features Ultra high speed (tpd <5ns), Partial power down (Ioff), Over-voltage tolerant inputs, Power up 3-state, Bus-hold Data rate (Mbps) 320 Rating Catalog open-in-new Find other Non-Inverting buffer/driver

Package | Pins | Size

SOIC (DW) 20 132 mm² 12.8 x 10.3 SOP (NS) 20 98 mm² 12.6 x 7.8 SSOP (DB) 20 38 mm² 5.3 x 7.2 TSSOP (PW) 20 42 mm² 6.5 x 6.4 VQFN (RGY) 20 16 mm² 3.5 x 4.5 open-in-new Find other Non-Inverting buffer/driver

Features

  • Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V VCC)
  • Typical VOLP (Output Ground Bounce)
       <0.8 V at VCC = 3.3 V, TA = 25°C
  • Support Unregulated Battery Operation Down to 2.7 V
  • Ioff and Power-Up 3-State Support Hot Insertion
  • Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
  • Latch-Up Performance Exceeds 500 mA Per JESD 17
  • ESD Protection Exceeds JESD 22
    • 2000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)

open-in-new Find other Non-Inverting buffer/driver

Description

These octal buffers and line drivers are designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment.

The ’LVTH244A devices are organized as two 4-bit line drivers with separate output-enable (OE)\ inputs. When OE\ is low, the devices pass data from the A inputs to the Y outputs. When OE\ is high, the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE\ should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

open-in-new Find other Non-Inverting buffer/driver
Download

Technical documentation

= Featured
No results found. Please clear your search and try again. View all 19
Type Title Date
* Datasheet SN54LVTH244A, SN74LVTH244A datasheet (Rev. J) Oct. 08, 2003
Application notes An Overview of Bus-Hold Circuit and the Applications (Rev. B) Sep. 17, 2018
Selection guides Logic Guide (Rev. AB) Jun. 12, 2017
Application notes Implications of Slow or Floating CMOS Inputs (Rev. D) Jun. 23, 2016
Application notes Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) Dec. 02, 2015
User guides LOGIC Pocket Data Book (Rev. B) Jan. 16, 2007
Application notes Semiconductor Packing Material Electrostatic Discharge (ESD) Protection Jul. 08, 2004
More literature Logic Cross-Reference (Rev. A) Oct. 07, 2003
Application notes TI IBIS File Creation, Validation, and Distribution Processes Aug. 29, 2002
Application notes 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) May 22, 2002
Application notes Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices May 10, 2002
More literature Military Low Voltage Solutions Apr. 04, 2001
Selection guides Advanced Bus Interface Logic Selection Guide Jan. 09, 2001
Application notes LVT-to-LVTH Conversion Dec. 08, 1998
Application notes LVT Family Characteristics (Rev. A) Mar. 01, 1998
Application notes Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) Aug. 01, 1997
Application notes Input and Output Characteristics of Digital Integrated Circuits Oct. 01, 1996
Application notes Live Insertion Oct. 01, 1996
Application notes Understanding Advanced Bus-Interface Products Design Guide May 01, 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARDS Download
document-generic User guide
$10.00
Description
This EVM is designed to support any logic device that has a D, DW, DB, NS, PW, P, N, or DGV package in a 14 to 24 pin count.
Features
  • Board design allows for versatility in evaluation
  • Supports a wide-range of logic devices

Design tools & simulation

SIMULATION MODELS Download
SCAM007A.ZIP (31 KB) - IBIS Model
SIMULATION MODELS Download
SCAM086.ZIP (7 KB) - PSpice Model
SIMULATION MODELS Download
SCEJ117A.ZIP (105 KB) - HSpice Model

CAD/CAE symbols

Package Pins Download
BGA MICROSTAR JUNIOR (ZQN) 20 View options
SO (NS) 20 View options
SOIC (DW) 20 View options
SSOP (DB) 20 View options
TSSOP (PW) 20 View options
VQFN (RGY) 20 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos

Related videos