A newer version of this product is available

open-in-new Compare alternates
Drop-in replacement with upgraded functionality to the compared device
OPA1632 ACTIVE Fully Differential I/O Audio Amplifier Wider supply range (5 V to 30 V), lower offset voltage (3 mV), lower power (14 mA), lower noise (1.3 nV/√Hz), higher output current (85 mA)

Product details

Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 6 Rail-to-rail No Iq per channel (typ) (mA) 22 Rating Catalog Operating temperature range (°C) 0 to 70 Input bias current (max) (pA) 30000000 CMRR (typ) (dB) 86 Iout (typ) (A) 0.004 Input common mode headroom (to negative supply) (typ) (V) 0 Input common mode headroom (to positive supply) (typ) (V) 0 Output swing headroom (to negative supply) (typ) (V) 0 Output swing headroom (to positive supply) (typ) (V) 0
Number of channels 1 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 16 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 6 Rail-to-rail No Iq per channel (typ) (mA) 22 Rating Catalog Operating temperature range (°C) 0 to 70 Input bias current (max) (pA) 30000000 CMRR (typ) (dB) 86 Iout (typ) (A) 0.004 Input common mode headroom (to negative supply) (typ) (V) 0 Input common mode headroom (to positive supply) (typ) (V) 0 Output swing headroom (to negative supply) (typ) (V) 0 Output swing headroom (to positive supply) (typ) (V) 0
PDIP (P) 8 92.5083 mm² 9.81 x 9.43 SOIC (D) 8 29.4 mm² 4.9 x 6 SOP (PS) 8 48.36 mm² 6.2 x 7.8
  • Low Output Common-Mode Sensitivity to AGC Voltages
  • Input and Output Impedances Independent of AGC Voltage
  • Peak Gain . . . 38 dB Typ
  • Wide AGC Range . . . 50 dB Typ
  • 3-dB Bandwidth . . . 50 MHz
  • Other Characteristics Similar to NE592 and uA733

  • Low Output Common-Mode Sensitivity to AGC Voltages
  • Input and Output Impedances Independent of AGC Voltage
  • Peak Gain . . . 38 dB Typ
  • Wide AGC Range . . . 50 dB Typ
  • 3-dB Bandwidth . . . 50 MHz
  • Other Characteristics Similar to NE592 and uA733

This device is a monolithic two-stage high-frequency amplifier with differential inputs and outputs.

Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable gain based on signal summation provides large AGC control over a wide bandwidth with low harmonic distortion. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically attenuated by applying a control voltage to the AGC pin. No external compensation components are required.

This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and disk-file systems where AGC is needed. Other applications include video and pulse amplifiers where a large AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.

The TL026C is characterized for operation from 0°C to 70°C.

This device is a monolithic two-stage high-frequency amplifier with differential inputs and outputs.

Internal feedback provides wide bandwidth, low phase distortion, and excellent gain stability. Variable gain based on signal summation provides large AGC control over a wide bandwidth with low harmonic distortion. Emitter-follower outputs enable the device to drive capacitive loads. All stages are current-source biased to obtain high common-mode and supply-voltage rejection ratios. The gain may be electronically attenuated by applying a control voltage to the AGC pin. No external compensation components are required.

This device is particularly useful in TV and radio IF and RF AGC circuits, as well as magnetic-tape and disk-file systems where AGC is needed. Other applications include video and pulse amplifiers where a large AGC range, wide bandwidth, low phase shift, and excellent gain stability are required.

The TL026C is characterized for operation from 0°C to 70°C.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 1
Type Title Date
* Data sheet Differential High-Frequency Amplifier With AGC datasheet (Rev. A) 01 Jul 1990

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP adapter evaluation module (DIP-ADAPTER-EVM), which provides a fast, easy and inexpensive way to interface with small surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them (...)

User guide: PDF
Not available on TI.com
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The analog engineer’s calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting operational-amplifier (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
User guide: PDF
Package Pins Download
PDIP (P) 8 View options
SOIC (D) 8 View options
SOP (PS) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos