Product details

Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.8 Rail-to-rail In, Out GBW (Typ) (MHz) 3 Slew rate (Typ) (V/us) 1.5 Vos (offset voltage @ 25 C) (Max) (mV) 3 Iq per channel (Typ) (mA) 0.15 Vn at 1 kHz (Typ) (nV/rtHz) 16 Rating Automotive Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 2 Features Cost Optimized, EMI Hardened CMRR (Typ) (dB) 96 Output current (Typ) (mA) 20 Architecture CMOS
Number of channels (#) 1 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.8 Rail-to-rail In, Out GBW (Typ) (MHz) 3 Slew rate (Typ) (V/us) 1.5 Vos (offset voltage @ 25 C) (Max) (mV) 3 Iq per channel (Typ) (mA) 0.15 Vn at 1 kHz (Typ) (nV/rtHz) 16 Rating Automotive Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 2 Features Cost Optimized, EMI Hardened CMRR (Typ) (dB) 96 Output current (Typ) (mA) 20 Architecture CMOS
SOT-23 (DBV) 5 5 mm² 2.9 x 1.6
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified With the Following Results:
    • Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature Range
    • Device HBM ESD Classification Level 3A
    • Device CDM ESD Classification Level C6
  • Low Offset Voltage: 0.75 mV (Typical)
  • Low Input Bias Current: 1 pA (Typical)
  • Wide Supply Range: 1.8 V to 5.5 V
  • Rail-to-Rail Input and Output
  • Gain Bandwidth: 3 MHz
  • Low IQ: 250 µA/Ch (Maximum)
  • Low Noise: 16 nV/√Hz at 1 kHz
  • Internal RF and EMI Filter
  • Number of Channels:
    • TLV314-Q1: 1
    • TLV2314-Q1: 2
    • TLV4314-Q1: 4
  • Extended Temperature Range:
    –40°C to +125°C
  • Qualified for Automotive Applications
  • AEC-Q100 Qualified With the Following Results:
    • Device Temperature Grade 1: –40°C to +125°C Ambient Operating Temperature Range
    • Device HBM ESD Classification Level 3A
    • Device CDM ESD Classification Level C6
  • Low Offset Voltage: 0.75 mV (Typical)
  • Low Input Bias Current: 1 pA (Typical)
  • Wide Supply Range: 1.8 V to 5.5 V
  • Rail-to-Rail Input and Output
  • Gain Bandwidth: 3 MHz
  • Low IQ: 250 µA/Ch (Maximum)
  • Low Noise: 16 nV/√Hz at 1 kHz
  • Internal RF and EMI Filter
  • Number of Channels:
    • TLV314-Q1: 1
    • TLV2314-Q1: 2
    • TLV4314-Q1: 4
  • Extended Temperature Range:
    –40°C to +125°C

The TLVx314-Q1 family of single-, dual-, and quad-channel operational amplifiers represents a new generation of low-power, general-purpose operational amplifiers. Rail-to-rail input and output swings (RRIO), low quiescent current (150 µA typically at 5 V) combine with a wide bandwidth of 3 MHz to make this family very attractive for a variety of battery-powered applications that require a good balance between cost and performance. The TLVx314-Q1 family achieves a low-input bias current of 1 pA, making it an excellent choice for high impedance sensors.

The robust design of the TLVx314-Q1 devices provides ease-of-use to the circuit designer: unity-gain stability, RRIO, capacitive loads of up to 300-pF, an integrated RF and EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (4-kV HBM).

These devices are optimized for low-voltage operation as low as 1.8 V (±0.9 V) and up to 5.5 V (±2.75 V), and are specified over the extended industrial temperature range of –40°C to +125°C.

The TLV314-Q1 (single) is available in both 5-pin SC70 and SOT-23 packages. The TLV2314-Q1 (dual) is offered in 8-pin SOIC and VSSOP packages. The quad-channel TLV4314-Q1 is offered in a 14-pin TSSOP package.

The TLVx314-Q1 family of single-, dual-, and quad-channel operational amplifiers represents a new generation of low-power, general-purpose operational amplifiers. Rail-to-rail input and output swings (RRIO), low quiescent current (150 µA typically at 5 V) combine with a wide bandwidth of 3 MHz to make this family very attractive for a variety of battery-powered applications that require a good balance between cost and performance. The TLVx314-Q1 family achieves a low-input bias current of 1 pA, making it an excellent choice for high impedance sensors.

The robust design of the TLVx314-Q1 devices provides ease-of-use to the circuit designer: unity-gain stability, RRIO, capacitive loads of up to 300-pF, an integrated RF and EMI rejection filter, no phase reversal in overdrive conditions, and high electrostatic discharge (ESD) protection (4-kV HBM).

These devices are optimized for low-voltage operation as low as 1.8 V (±0.9 V) and up to 5.5 V (±2.75 V), and are specified over the extended industrial temperature range of –40°C to +125°C.

The TLV314-Q1 (single) is available in both 5-pin SC70 and SOT-23 packages. The TLV2314-Q1 (dual) is offered in 8-pin SOIC and VSSOP packages. The quad-channel TLV4314-Q1 is offered in a 14-pin TSSOP package.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 8
Type Title Date
* Data sheet TLVx314-Q1 3-MHz, low-power, internal EMI filter, RRIO, operational amplifier datasheet (Rev. A) 22 Jan 2019
Functional safety information TLV314-Q1 Functional Safety FIT Rate, FMD, and Pin FMA 29 Aug 2020
Technical article What is an op amp? 21 Jan 2020
Application note Automotive Current Monitoring Using High Speed Amplifiers 16 Jul 2018
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

In stock
Limit: 5
Evaluation board

DIYAMP-EVM — Universal Do-It-Yourself (DIY) Amplifier Circuit Evaluation Module

The DIYAMP-EVM is a unique evaluation module (EVM) family that provides engineers and do it yourselfers (DIYers) with real-world amplifier circuits, enabling you to quickly evaluate design concepts and verify simulations. It is available in three industry-standard packages (SC70, SOT23, SOIC) and 12 (...)
Simulation model

TLV314 TINA-TI Spice Model (Rev. A)

SBOM972A.ZIP (5 KB) - TINA-TI Spice Model
Simulation model

TLV314 TINA-TI Reference Design (Rev. A)

SBOM973A.ZIP (21 KB) - TINA-TI Reference Design
Simulation model

TLV314 PSpice Model (Rev. B)

SBOM974B.ZIP (30 KB) - PSpice Model
Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Reference designs

PMP22650 — GaN-based, 6.6-kW, bidirectional, onboard charger reference design

The PMP22650 reference design is a 6.6-kW, bidirectional, onboard charger. The design employs a two-phase totem pole PFC and a full-bridge CLLLC converter with synchronous rectification. The CLLLC utilizes both frequency and phase modulation to regulate the output across the required regulation (...)
Reference designs

TIDA-01418 — Automotive high voltage, high power motor driver reference design for HVAC compressor

This brushless DC (BLDC) motor reference design controls an automotive HVAC (heating, ventilation, and air conditioning) compressor by using the UCC27712-Q1 high-side and low-side gate driver followed by discrete insulated-gate bipolar transistor (IGBT) half bridges. This reference design uses TI's (...)
Reference designs

PMP22155 — High voltage inverting buck-boost converter reference design for ADAS applications

This non-isolated design supplies an adjustable output voltage between -150-V and -250-V at 10-mA for LIDAR applications. It operates over an automotive input voltage range of 6-V to 40-V and accepts a control voltage from 0-V to 3-V for output voltage adjustment. Utilizing a single inductor and (...)
Package Pins Download
SOT-23 (DBV) 5 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos