Product details

Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.7 Rail-to-rail In, Out GBW (Typ) (MHz) 0.008 Slew rate (Typ) (V/us) 0.0037 Vos (offset voltage @ 25 C) (Max) (mV) 4 Iq per channel (Typ) (mA) 0.0005 Vn at 1 kHz (Typ) (nV/rtHz) 300 Rating Catalog Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1.5 Features Cost Optimized, EMI Hardened CMRR (Typ) (dB) 90 Output current (Typ) (mA) 5 Architecture CMOS
Number of channels (#) 2 Total supply voltage (Max) (+5V=5, +/-5V=10) 5.5 Total supply voltage (Min) (+5V=5, +/-5V=10) 1.7 Rail-to-rail In, Out GBW (Typ) (MHz) 0.008 Slew rate (Typ) (V/us) 0.0037 Vos (offset voltage @ 25 C) (Max) (mV) 4 Iq per channel (Typ) (mA) 0.0005 Vn at 1 kHz (Typ) (nV/rtHz) 300 Rating Catalog Operating temperature range (C) -40 to 125 Offset drift (Typ) (uV/C) 1.5 Features Cost Optimized, EMI Hardened CMRR (Typ) (dB) 90 Output current (Typ) (mA) 5 Architecture CMOS
VSSOP (DGK) 8 15 mm² 3 x 4.9
  • Unmatched Price Performance
  • Wide Supply Range 1.7 V to 5.5 V
  • Low Supply Current 500 nA
  • Good Offset Voltage 4 mV (max)
  • Good TcVos 1.5 µV/°C
  • Gain-Bandwidth 8 kHz
  • Rail-to-Rail Input and Output (RRIO)
  • Unity-Gain Stable
  • Low Input Bias Current 1 pA
  • EMI Hardened
  • Temperature Range –40°C to 125°C
  • 8-pin VSSOP Package
  • Unmatched Price Performance
  • Wide Supply Range 1.7 V to 5.5 V
  • Low Supply Current 500 nA
  • Good Offset Voltage 4 mV (max)
  • Good TcVos 1.5 µV/°C
  • Gain-Bandwidth 8 kHz
  • Rail-to-Rail Input and Output (RRIO)
  • Unity-Gain Stable
  • Low Input Bias Current 1 pA
  • EMI Hardened
  • Temperature Range –40°C to 125°C
  • 8-pin VSSOP Package

The TLV522 500 nA dual, nanopower op amp offers optimum price performance in TI’s nanopower family of operational amplifiers. The TLV522 provides 8 kHz of gain bandwidth from 500 nA of quiescent current, making it well suited for battery powered applications found in building automation and remote sensing nodes. Its CMOS input stage enables very low IBIAS, reducing errors commonly introduced in Megaohm feedback resistance topologies such as high-impedance photodiode and charge sense applications. Additionally, built-in EMI protection reduces sensitivity to unwanted RF signals from sources like mobile phones, WiFi, radio transmitters and RFID readers.

The TLV522 is offered in the 8-pin VSSOP (MSOP) package, and operates from –40°C to 125°C.

The TLV522 500 nA dual, nanopower op amp offers optimum price performance in TI’s nanopower family of operational amplifiers. The TLV522 provides 8 kHz of gain bandwidth from 500 nA of quiescent current, making it well suited for battery powered applications found in building automation and remote sensing nodes. Its CMOS input stage enables very low IBIAS, reducing errors commonly introduced in Megaohm feedback resistance topologies such as high-impedance photodiode and charge sense applications. Additionally, built-in EMI protection reduces sensitivity to unwanted RF signals from sources like mobile phones, WiFi, radio transmitters and RFID readers.

The TLV522 is offered in the 8-pin VSSOP (MSOP) package, and operates from –40°C to 125°C.

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 6
Type Title Date
* Data sheet TLV522 Dual Nanopower, 500nA, RRIO CMOS Operational Amplifier datasheet 20 May 2016
Technical article What is an op amp? 21 Jan 2020
Technical article How to lay out a PCB for high-performance, low-side current-sensing designs 06 Feb 2018
Technical article Low-side current sensing for high-performance cost-sensitive applications 22 Jan 2018
Technical article Voltage and current sensing in HEV/EV applications 22 Nov 2017
E-book The Signal e-book: A compendium of blog posts on op amp design topics 28 Mar 2017

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

DIP-ADAPTER-EVM — DIP adapter evaluation module

Speed up your op amp prototyping and testing with the DIP-Adapter-EVM, which provides a fast, easy and inexpensive way to interface with small, surface-mount ICs. You can connect any supported op amp using the included Samtec terminal strips or wire them directly to existing circuits.

The (...)

Simulation tool

PSPICE-FOR-TI — PSpice® for TI design and simulation tool

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Simulation tool

TINA-TI — SPICE-based analog simulation program

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Calculation tool

ANALOG-ENGINEER-CALC — Analog engineer's calculator

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
lock = Requires export approval (1 minute)
Design tool

CIRCUIT060013 — Inverting amplifier with T-network feedback circuit

This design inverts the input signal, VIN, and applies a signal gain of 1000 V/V or 60 dB. The inverting amplifier with T-feedback network can be used to obtain a high gain without a small value for R4 or very large values for the feedback resistors.
Design tool

CIRCUIT060015 — Adjustable reference voltage circuit

This circuit combines an inverting and non-inverting amplifier to make a reference voltage adjustable from the negative of the input voltage up to the input voltage. Gain can be added to increase the maximum negative reference level.
Design tool

CIRCUIT060074 — High-side current sensing with comparator circuit

This high-side, current sensing solution uses one comparator with a rail-to-rail input common mode range to create an over-current alert (OC-Alert) signal at the comparator output (COMP OUT) if the load current rises above 1 A. The OC-Alert signal in this implementation is active low. So when the (...)
Reference designs

PMP30693 — Supercapacitor backup power supply with current limit and active cell balancing reference design

This reference design automatically provides a back-up voltage during a power interruption. It manages the charging of supercapitors and provides reverse blocking protection. The maximum supercapacitor charging current and voltage can be adjusted. When the input voltage fails a buck-boost (...)
Package Pins Download
VSSOP (DGK) 8 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos