Top

Product details

Parameters

Video port (configurable) 1 Dedicated Output, 1 Dedicated Input Ethernet MAC 10/100 USB 1 SPI 1 I2C 1 UART (SCI) 3 Rating Catalog Approx. price (US$) 16.43 | 1ku open-in-new Find other Audio & media processors

Package | Pins | Size

NFBGA (ZWT) 361 256 mm² 16 x 16 open-in-new Find other Audio & media processors

Features

  • Get started today with production-ready, easy-to-use audio and video codecs for digital media processors based on DaVinci™ technology. Also available are various O/S Board Support Packages and software updates. All codecs are available for FREE evaluation. REQUEST FREE SOFTWARE!
  • High-Performance Digital Media SoC
    • 270-MHz ARM926EJ-S™ Core
    • Fully Software-Compatible With ARM9™
  • ARM926EJ-S Core
    • Support for 32-Bit and 16-Bit (Thumb® Mode) Instruction Sets
    • ARM® Jazelle® Technology
    • EmbeddedICE-RT™ Logic for Real-Time Debug
  • ARM9 Memory Architecture
    • 16K-Byte Instruction Cache
    • 8K-Byte Data Cache
    • 16K-Byte RAM
    • 8K-Byte ROM
  • H.264/MPEG4/JPEG Coprocessor
    • Fixed Function Coprocessor Supports:
      • H.264 BP Codec at D1, VGA, SIF
      • MPEG4 SP Codec at D1, VGA, SIF
      • JPEG Codec
  • Embedded Trace Buffer™ (ETB11™) With 4KB Memory for ARM9 Debug
  • Endianness: Little Endian
  • Video Processing Subsystem
    • Front End Provides:
      • CCD and CMOS Imager Interface
      • BT.601/BT.656 Digital YCbCr 4:2:2 (8-/16-Bit) Interface
      • Preview Engine for Real-Time Image Processing
      • Glueless Interface to Common Video Decoders
      • Histogram Module
      • Auto-Exposure, Auto-White Balance and Auto-Focus Module
      • Resize Engine
        • Resize Images From 1/4x to 4x
        • Separate Horizontal/Vertical Control
    • Back End Provides:
      • Hardware On-Screen Display (OSD)
      • 3 - 54-MHz DACs for a Combination of:
        • Composite NTSC/PAL Video
        • Luma/Chroma Separate Video (S-video)
        • Component (YPbPr or RGB) Video (Progressive/Interlaced)
        • Digital Output
        • 8-/16-bit YUV or up to 24-Bit RGB
        • Up to 2 Video Windows
  • External Memory Interfaces (EMIFs)
    • 32-Bit DDR2 SDRAM Memory Controller With 256M-Byte Address Space (1.8-V I/O)
    • Asynchronous 16-Bit Wide EMIF (EMIFA) With 128M-Byte Address Reach
      • Flash Memory Interfaces
        • NOR (8-/16-Bit-Wide Data)
        • NAND (8-/16-Bit-Wide Data)
  • Flash Card Interfaces
    • Multimedia Card (MMC)/Secure Digital (SD) with Secure Data I/O (SDIO)
    • SmartMedia
  • Enhanced Direct-Memory-Access (EDMA) Controller (64 Independent Channels)
  • Two 64-Bit General-Purpose Timers (Each Configurable as Two 32-Bit Timers)
  • One 64-Bit Watch Dog Timer
  • Three UARTs (One with RTS and CTS Flow Control)
  • One Serial Peripheral Interface (SPI) With Two Chip-Selects
  • Master/Slave Inter-Integrated Circuit I2C Bus™)
  • Audio Serial Port (ASP)
    • I2S
    • AC97 Audio Codec Interface
    • Standard Voice Codec Interface (AIC12)
  • 10/100 Mb/s Ethernet Media Access Controller (EMAC)
    • IEEE 802.3 Compliant
    • Media Independent Interface (MII)
  • Host Port Interface (HPI) with 16-Bit Multiplexed Address/Data
  • USB2.0 OTG Controller With Integrated High-Speed 2.0 PHY
  • Three Pulse Width Modulator (PWM) Outputs
  • On-Chip ARM ROM Bootloader (RBL) to Boot From NAND Flash or UART
  • Comprehensive Power-Saving Modes
  • Flexible PLL Clock Generators
  • IEEE-1149.1 (JTAG) Boundary-Scan-Compatible
  • Up to 71 General-Purpose I/O (GPIO) Pins (Multiplexed With Other Device Functions)
  • 361-Pin Pb-Free BGA Package (ZWT Suffix), 0.8-mm Ball Pitch
  • 0.09-µm/6-Level Cu Metal Process (CMOS)
  • 3.3-V and 1.8-V I/O, 1.2-V Core
  • Applications:
    • Digital Media
    • Networked Media Encode/Decode
    • Video Imaging

All trademarks are the property of their respective owners.

open-in-new Find other Audio & media processors

Description

The TMS320DM357 (also referenced as DM357) leverages TI's DaVinci™ technology to meet the networked media encode and decode application processing needs of next-generation embedded devices.

The DM357 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, high processing performance, and long battery life through the maximum flexibility of a fully integrated mixed processor solution.

The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously.

The ARM core incorporates:

  • A coprocessor 15 (CP15) and protection module
  • Data and program Memory Management Units (MMUs) with table look-aside buffers.
  • Separate 16K-byte instruction and 8K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT).

The DM357 performance is enhanced by its H.264/MPEG4/JPEG coprocessor (HMJCP). The HMJCP performs the computational operations required for image processing; JPEG compression and MPEG4 video and imaging standard. The H.264/MPEG4/JPEG coprocessor supports MPEG4 Simple Profile (SP) , D1, VGA, SIF encode/decode resolutions and JPEG encode/decode.

The peripheral set includes: 2 configurable video ports (one input port and one output port); a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; an inter-integrated circuit (I2C) Bus interface; one audio serial port (ASP); 2 64-bit general-purpose timers each configurable as 2 independent 32-bit timers; 1 64-bit watchdog timer; up to 71-pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UARTs with hardware handshaking support on 1 UART; 3 pulse width modulator (PWM) peripherals; and 2 external memory interfaces: an asynchronous external memory interface (EMIFA) for slower memories/peripherals, and a higher speed synchronous memory interface for DDR2.

The DM357 device includes a Video Processing Subsystem (VPSS) with two configurable video/imaging peripherals: 1 Video Processing Front-End (VPFE) input used for video capture, and 1 Video Processing Back-End (VPBE) output for displaying video images.

The Video Processing Front-End (VPFE) is comprised of a CCD Controller (CCDC), a Preview Engine (Previewer), Histogram Module, Auto-Exposure/White Balance/Focus Module (H3A), and Resizer. The CCDC is capable of interfacing to common video decoders, CMOS sensors, and Charge Coupled Devices (CCDs). The Previewer is a real-time image processing engine that takes raw imager data from a CMOS sensor or CCD and converts from an RGB Bayer Pattern to YUV4:2:2. The Histogram and H3A modules provide statistical information on the raw color data for use by the DM357. The Resizer accepts image data for separate horizontal and vertical resizing from 1/4x to 4x in increments of 256/N, where N is between 64 and 1024.

The Video Processing Back-End (VPBE) is comprised of an On-Screen Display Engine (OSD) and a Video Encoder (VENC). The OSD engine is capable of handling 2 separate video windows and 2 separate OSD windows. Other configurations include 2 video windows, 1 OSD window, and 1 attribute window allowing up to 8 levels of alpha blending. The VENC provides three analog DACs that run at 54 MHz, providing a means for composite NTSC/PAL video, S-Video, and/or Component video output. The VENC also provides up to 24 bits of digital output to interface to RGB888 devices or hi-speed triple DACs such as the THS8200. The digital output is capable of 8/16-bit BT.656 output and/or CCIR.601 with separate horizontal and vertical syncs.

The Ethernet Media Access Controller (EMAC) provides an efficient interface between the DM357 and the network. The DM357 EMAC support both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.

The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. Once a Ethernet PHY candidate has been selected by the ARM, the MDIO module transparently monitors its link state by reading the PHY status register. Link change events are stored in the MDIO module and can optionally interrupt the ARM, allowing the ARM to poll the link status of the device without continuously performing costly MDIO accesses.

The HPI, I2C, SPI, and USB2.0 OTG ports allow DM357 to easily control peripheral devices and/or communicate with host processors. The DM357 also provides multimedia card support, MMC/SD, with SDIO support.

The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides.

The DM357 has a complete set of development tools for the ARM926EJS. These include C compilers and a Windows™ debugger interface for visibility into source code execution.

open-in-new Find other Audio & media processors
Download

Support through a third party

This product does not have ongoing direct design support from TI. For support while working through your design, you may contact one of the following third parties: D3 Engineering, elnfochips, Ittiam Systems, Path Partner Technology, or Z3 Technologies.

Technical documentation

= Featured
No results found. Please clear your search and try again. View all 24
Type Title Date
* Datasheet TMS320DM357 Digital Media System-on-Chip datasheet Nov. 18, 2008
* Errata TMS320DM357 Digital Signal Processor Errata Nov. 18, 2008
Application notes Migrating From TMS320DM35x to TMS320DM36x Devices (Rev. A) Jun. 02, 2011
User guides TMS320DM357 General-Purpose Input/Output (GPIO) User's (Rev. A) Sep. 19, 2010
User guides TMS320DM357 Pulse-Width Modulator (PWM) User's Guide (Rev. A) Aug. 06, 2010
User guides TMS320DM357 DMSoC Universal Serial Bus Controller (USB) User's Guide (Rev. A) Nov. 20, 2009
Application notes TMS320DM357 Power Consumption Summary Mar. 10, 2009
User guides TMS320DM357 DVEVM v2.05 Getting Started Guide Dec. 31, 2008
User guides TMS320DM357 Asynchronous External Memory Interface (EMIF) User's Guide Nov. 19, 2008
User guides TMS320DM357 Audio Serial Port (ASP) User's Guide Nov. 19, 2008
User guides TMS320DM357 DDR2 Memory Controller User's Guide Nov. 19, 2008
User guides TMS320DM357 Video Processing Front End (VPFE) User's Guide Nov. 19, 2008
Application notes Implementing DDR2 PCB Layout on the TMS320DM357 DMSoC (Rev. A) Nov. 18, 2008
User guides TMS320DM357 64-bit Timer User's Guide Nov. 18, 2008
User guides TMS320DM357 ARM Subsystem Reference Guide Nov. 18, 2008
User guides TMS320DM357 DMSoC Peripherals Overview Reference Guide Nov. 18, 2008
User guides TMS320DM357 DSP Multimedia Card (MMC)/Secure Digital (SD) Card Controller User's Nov. 18, 2008
User guides TMS320DM357 EMAC/MDIO User's Guide Nov. 18, 2008
User guides TMS320DM357 Enhanced Direct Memory Access (EDMA) Controller User's Guide Nov. 18, 2008
User guides TMS320DM357 Host Port Interface (HPI) User's Guide Nov. 18, 2008
User guides TMS320DM357 Inter-Integrated Circuit (I2C) User's Guide Nov. 18, 2008
User guides TMS320DM357 Serial Peripheral Interface (SPI) User's Guide Nov. 18, 2008
User guides TMS320DM357 Universal Asynchronous Receiver/Transmitter (UART) User's Guide Nov. 18, 2008
User guides TMS320DM357 Video Processing Back End (VPBE) User's Guide Nov. 18, 2008

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Software development

SOFTWARE DEVELOPMENT KITS (SDK) Download
Linux Digital Video Software Development Kits (DVSDK) v2x/v3x - DaVinci Digital Media Processors
LINUXDVSDK-DV Effective Oct 2010 - Linux DVSDK v4 has been released. For DaVinci™ devices not listed above, search TI.com for your device part number; This product page will have a link to your current DVSDK.

The Linux™ Digital Video Software Development Kits (DVSDKs) enable DaVinci system integrators to (...)

Features

All versions of the Linux DaVinci Digital Video Software Development Kits (DVSDK) combine all the software components and tools needed to begin development of multimedia applications on DaVinci technology-based devices. 

 

DVSDK v3.10 - DM355 and DM6467T (1 GHz) – PRODUCTION
The Linux DaVinci DVSDK v3.10 (...)

APPLICATION SOFTWARE & FRAMEWORKS Download
Multimedia Framework Products (MFP) - Codec Engine, Framework Components and XDAIS
TMDMFP Multimedia Framework Products (MFP)

A major advantage of programmable signal processors over fixed-function devices is their ability to accelerate multiple multimedia functions and provide flexible environments to enable user customization. However, sharing scarce embedded hardware resources between (...)

Features

Multimedia Framework Products MFP


MFP is completely open source.  It is distributed under the BSD license (with the exception of kernel mode Linux drivers in the Linux Utils product, which are licensed under GPLv2), and is freely available from TI.

  • XDAIS
    TI's well-proven eXpressDSP Algorithm (...)

Design tools & simulation

SIMULATION MODELS Download
SPRM340.ZIP (8 KB) - BSDL Model
SIMULATION MODELS Download
SPRM341.ZIP (112 KB) - IBIS Model

CAD/CAE symbols

Package Pins Download
NFBGA (ZWT) 361 View options

Ordering & quality

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​