Produktdetails

Rating Automotive Operating temperature range (°C) -40 to 105
Rating Automotive Operating temperature range (°C) -40 to 105
USON (DNP) 6 4 mm² 2 x 2
  • AEC-Q100 qualified for automotive applications:
    • Temperature grade 2: –40°C to +105°C, TA
  • High-precision, high-speed light-to-digital conversion over high-speed I2C interface
  • Visible channel:
    • Precision optical filtering closely matches human eye with excellent near infrared (NIR) rejection
    • 28 bits of effective dynamic range: 535 µlux to 143 klux
  • Near IR channel:
    • Precision optical filtering provides high NIR sensitivity with excellent visible rejection
    • 26-bits of effective dynamic range: 409 pW/cm2 to 27 mW/cm2
  • Semi-logarithmic output:
    • 9 (visible channel) and 7 (NIR channel) binary logarithmic full-scale light ranges
    • Highly linear response within each range
  • Built-in automatic full-scale light range selection logic that switches measurement range based on input light condition for best possible resolution at all times
  • 12 configurable conversion times:
    • 600 µs to 800 ms per channel for high-speed and high-precision applications
  • External pin interrupt for hardware-synchronized trigger and interrupts
  • Error correction code features for improved reliability in automotive use cases
  • Internal FIFO for output registers with I2C burst readout
  • Low operating current: 30 µA
  • Ultra-low power standby: 2 µA
  • Operating temperature range: –40°C to +105°C
  • Wide power-supply range: 1.6 V to 3.6 V
  • 5.5-V tolerant I/O pins
  • Selectable I2C address
  • Small-form factor: 2 mm × 2 mm × 0.65 mm
  • AEC-Q100 qualified for automotive applications:
    • Temperature grade 2: –40°C to +105°C, TA
  • High-precision, high-speed light-to-digital conversion over high-speed I2C interface
  • Visible channel:
    • Precision optical filtering closely matches human eye with excellent near infrared (NIR) rejection
    • 28 bits of effective dynamic range: 535 µlux to 143 klux
  • Near IR channel:
    • Precision optical filtering provides high NIR sensitivity with excellent visible rejection
    • 26-bits of effective dynamic range: 409 pW/cm2 to 27 mW/cm2
  • Semi-logarithmic output:
    • 9 (visible channel) and 7 (NIR channel) binary logarithmic full-scale light ranges
    • Highly linear response within each range
  • Built-in automatic full-scale light range selection logic that switches measurement range based on input light condition for best possible resolution at all times
  • 12 configurable conversion times:
    • 600 µs to 800 ms per channel for high-speed and high-precision applications
  • External pin interrupt for hardware-synchronized trigger and interrupts
  • Error correction code features for improved reliability in automotive use cases
  • Internal FIFO for output registers with I2C burst readout
  • Low operating current: 30 µA
  • Ultra-low power standby: 2 µA
  • Operating temperature range: –40°C to +105°C
  • Wide power-supply range: 1.6 V to 3.6 V
  • 5.5-V tolerant I/O pins
  • Selectable I2C address
  • Small-form factor: 2 mm × 2 mm × 0.65 mm

The OPT4003-Q1 is a dual-channel, light-to-digital sensor (single-chip lux meter and NIR power meter) that independently measures the intensity of visible and near infrared (NIR) light. To measure accurate visible light intensity, a specially engineered filter on the device tightly matches the photopic response of the human eye and rejects the near-infrared component from common light sources. The NIR channel filter is specially engineered to provide high sensitivity to wavelengths in the near infrared region while achieving high rejection of visible wavelengths with a sharp cutoff at 800 nm. The output of the OPT4003-Q1 is semi-logarithmic with binary logarithmic full-scale light ranges along with a highly linear response within each range. The visible channel provides nine binary light ranges, providing measurement capability from 535 µlux to 143 klux and 28 bits of effective dynamic range. The NIR channel provides seven light ranges, providing measurement capability from 409 pW/cm2 to 27 mW/cm2 and 26 bits of effective dynamic range. The built-in automatic range selection logic dynamically adjusts the device gain settings based on the light level, providing the best possible resolution in all conditions without user input.

The OPT4003-Q1 is equipped with engineered optical filters on both channels, providing strong out-of-band rejection. Strong infrared rejection on the visible channel aids in maintaining high lux accuracy across all light sources, especially when the sensor is placed under dark glass for aesthetic reasons. The NIR channel robust rejection of visible wavelengths and sharp cutoff at 800 nm enables precise near-infrared measurements under mixed lighting conditions, including high levels of visible light.

The OPT4003-Q1 is designed for systems that require light level detection to enhance user experience and typically replaces low-accuracy photodiodes, photoresistors, and other ambient light sensors with underwhelming human eye matching and near-infrared rejection.

The OPT4003-Q1 can be configured to operate with light conversion times from 600 µs to 800 ms per channel in 12 steps, providing system flexibility based on application need. Conversion time includes the light integration time and analog-to-digital (ADC) conversion time. Measurement resolution is determined by a combination of light intensity and integration time, effectively providing the capability to measure down to 535 µlux of light intensity changes.

Digital operation is flexible for system integration. Measurements can be either continuous or triggered in one shot with register writes or a hardware pin. The device features a threshold detection logic, which allows the processor to sleep while the sensor waits for an appropriate wake-up event to report through the interrupt pin.

The sensor reports a digital output representing the light level over an I2C- and SMBus-compatible, two-wire serial interface. An internal first-in-first-out (FIFO) on the output registers is available to read out measurements from the sensor at a slower pace while still preserving all data captured by the device. The OPT4003-Q1 also supports I2C burst mode, thus helping the host read data from the FIFO with minimal I2C overhead.

The low power consumption and low power-supply voltage capability of the OPT4003-Q1 helps enhance the battery life of battery-powered systems.

The OPT4003-Q1 is a dual-channel, light-to-digital sensor (single-chip lux meter and NIR power meter) that independently measures the intensity of visible and near infrared (NIR) light. To measure accurate visible light intensity, a specially engineered filter on the device tightly matches the photopic response of the human eye and rejects the near-infrared component from common light sources. The NIR channel filter is specially engineered to provide high sensitivity to wavelengths in the near infrared region while achieving high rejection of visible wavelengths with a sharp cutoff at 800 nm. The output of the OPT4003-Q1 is semi-logarithmic with binary logarithmic full-scale light ranges along with a highly linear response within each range. The visible channel provides nine binary light ranges, providing measurement capability from 535 µlux to 143 klux and 28 bits of effective dynamic range. The NIR channel provides seven light ranges, providing measurement capability from 409 pW/cm2 to 27 mW/cm2 and 26 bits of effective dynamic range. The built-in automatic range selection logic dynamically adjusts the device gain settings based on the light level, providing the best possible resolution in all conditions without user input.

The OPT4003-Q1 is equipped with engineered optical filters on both channels, providing strong out-of-band rejection. Strong infrared rejection on the visible channel aids in maintaining high lux accuracy across all light sources, especially when the sensor is placed under dark glass for aesthetic reasons. The NIR channel robust rejection of visible wavelengths and sharp cutoff at 800 nm enables precise near-infrared measurements under mixed lighting conditions, including high levels of visible light.

The OPT4003-Q1 is designed for systems that require light level detection to enhance user experience and typically replaces low-accuracy photodiodes, photoresistors, and other ambient light sensors with underwhelming human eye matching and near-infrared rejection.

The OPT4003-Q1 can be configured to operate with light conversion times from 600 µs to 800 ms per channel in 12 steps, providing system flexibility based on application need. Conversion time includes the light integration time and analog-to-digital (ADC) conversion time. Measurement resolution is determined by a combination of light intensity and integration time, effectively providing the capability to measure down to 535 µlux of light intensity changes.

Digital operation is flexible for system integration. Measurements can be either continuous or triggered in one shot with register writes or a hardware pin. The device features a threshold detection logic, which allows the processor to sleep while the sensor waits for an appropriate wake-up event to report through the interrupt pin.

The sensor reports a digital output representing the light level over an I2C- and SMBus-compatible, two-wire serial interface. An internal first-in-first-out (FIFO) on the output registers is available to read out measurements from the sensor at a slower pace while still preserving all data captured by the device. The OPT4003-Q1 also supports I2C burst mode, thus helping the host read data from the FIFO with minimal I2C overhead.

The low power consumption and low power-supply voltage capability of the OPT4003-Q1 helps enhance the battery life of battery-powered systems.

Herunterladen Video mit Transkript ansehen Video

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 2
Typ Titel Datum
* Data sheet OPT4003-Q1 Automotive High-Speed, High-Precision, Digital Ambient Light Sensor datasheet (Rev. A) PDF | HTML 13 Dez 2023
Application note Light Source Detection Using the OPT4003-Q1 Ambient Light Sensor PDF | HTML 19 Dez 2023

Design und Entwicklung

Weitere Bedingungen oder erforderliche Ressourcen enthält gegebenenfalls die Detailseite, die Sie durch Klicken auf einen der unten stehenden Titel erreichen.

Evaluierungsplatine

OPT4003DNPQ1EVM — OPT4003-Q1 Evaluierungsmodul für einen zweikanaligen Umgebungslichtsonsor (sichtbar und infrarot) fü

Das OPT4003DNPQ1EVM Evaluierungsmodul (EVM) ist eine Plattform zur Evaluierung der Leistungsfähigkeit des Zweikanal- (sichtbar und infrarot) Hochgeschwindigkeitsumgebungslichtsensors OPT4003-Q1. Der Baustein OPT4003-Q1 ist für den Einsatz unter verschiedenen Lichtverhältnissen und hinter (...)

Benutzerhandbuch: PDF | HTML
Gehäuse Pins Herunterladen
USON (DNP) 6 Optionen anzeigen

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort

Empfohlene Produkte können Parameter, Evaluierungsmodule oder Referenzdesigns zu diesem TI-Produkt beinhalten.

Support und Schulungen

TI E2E™-Foren mit technischem Support von TI-Ingenieuren

Inhalte werden ohne Gewähr von TI und der Community bereitgestellt. Sie stellen keine Spezifikationen von TI dar. Siehe Nutzungsbedingungen.

Bei Fragen zu den Themen Qualität, Gehäuse oder Bestellung von TI-Produkten siehe TI-Support. ​​​​​​​​​​​​​​

Videos