SLVSGV9 august   2023 DRV8213

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Diagrams
    7. 7.7 Typical Operating Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 External Components
    4. 8.4 Feature Description
      1. 8.4.1 Bridge Control
      2. 8.4.2 Current Sense and Regulation (IPROPI)
        1. 8.4.2.1 Current Sensing and Current Mirror Gain Selection
        2. 8.4.2.2 Current Regulation
      3. 8.4.3 Hardware Stall Detection
      4. 8.4.4 Protection Circuits
        1. 8.4.4.1 Overcurrent Protection (OCP)
        2. 8.4.4.2 Thermal Shutdown (TSD)
        3. 8.4.4.3 VM Undervoltage Lockout (UVLO)
    5. 8.5 Device Functional Modes
      1. 8.5.1 Active Mode
      2. 8.5.2 Low-Power Sleep Mode
      3. 8.5.3 Fault Mode
    6. 8.6 Pin Diagrams
      1. 8.6.1 Logic-Level Inputs
      2. 8.6.2 Tri-Level Input
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Brushed DC Motor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Motor Voltage
          2. 9.2.1.2.2 Motor Current
        3. 9.2.1.3 Stall Detection
          1. 9.2.1.3.1 Detailed Design Procedure
            1. 9.2.1.3.1.1 Hardware Stall Detection Application Description
              1. 9.2.1.3.1.1.1 Hardware Stall Detection Timing
              2. 9.2.1.3.1.1.2 Hardware Stall Threshold Selection
            2. 9.2.1.3.1.2 Software Stall Detection Application Description
              1. 9.2.1.3.1.2.1 Software Stall Detection Timing
              2. 9.2.1.3.1.2.2 Software Stall Threshold Selection
        4. 9.2.1.4 Application Curves
        5. 9.2.1.5 Thermal Performance
          1. 9.2.1.5.1 Steady-State Thermal Performance
          2. 9.2.1.5.2 Transient Thermal Performance
  11. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
  12. 11Layout
    1. 11.1 Layout Guidelines
  13. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bulk Capacitance

Having appropriate local bulk capacitance is an important factor in motor drive system design. Having more bulk capacitance is generally beneficial, while the disadvantages are increased cost and physical size.

The amount of local capacitance needed depends on a variety of factors, including:

  • The highest current required by the motor system
  • The capacitance of the power supply and ability to source current
  • The amount of parasitic inductance between the power supply and motor system
  • The acceptable voltage ripple
  • The type of motor used (brushed DC, brushless DC, stepper)
  • The motor braking method

The inductance between the power supply and motor drive system limits how the rate current can change from the power supply. If the local bulk capacitance is too small, the system responds to excessive current demands or dumps from the motor with a change in voltage. When adequate bulk capacitance is used, the motor voltage remains stable and high current can be quickly supplied.

The data sheet generally provides a recommended value, but system-level testing is required to determine the appropriate sized bulk capacitor.

GUID-CFF3CE3F-35BC-4C09-83C3-C9233EF66041-low.gifFigure 10-1 Example Setup of Motor Drive System With External Power Supply

The voltage rating for bulk capacitors should be higher than the operating voltage, to provide margin for cases when the motor transfers energy to the supply.