SBOSA45C february   2022  – may 2023 TMP1826

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Description (cont.)
  7. Device Comparison
  8. Pin Configuration and Functions
  9. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 1-Wire Interface Timing
    7. 8.7 EEPROM Characteristics
    8. 8.8 Timing Diagrams
    9. 8.9 Typical Characteristics
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Power Up
      2. 9.3.2  Power Mode Switch
      3. 9.3.3  Bus Pullup Resistor
      4. 9.3.4  Temperature Results
      5. 9.3.5  Temperature Offset
      6. 9.3.6  Temperature Alert
      7. 9.3.7  Standard Device Address
        1. 9.3.7.1 Unique 64-Bit Device Address and ID
      8. 9.3.8  Flexible Device Address
        1. 9.3.8.1 Non-Volatile Short Address
        2. 9.3.8.2 IO Hardware Address
        3. 9.3.8.3 Resistor Address
        4. 9.3.8.4 Combined IO and Resistor Address
      9. 9.3.9  CRC Generation
      10. 9.3.10 Functional Register Map
      11. 9.3.11 User Memory Map
      12. 9.3.12 Bit Communication
        1. 9.3.12.1 Host Write, Device Read
        2. 9.3.12.2 Host Read, Device Write
      13. 9.3.13 Bus Speed
      14. 9.3.14 NIST Traceability
    4. 9.4 Device Functional Modes
      1. 9.4.1 Conversion Modes
        1. 9.4.1.1 Basic One-Shot Conversion Mode
        2. 9.4.1.2 Auto Conversion Mode
        3. 9.4.1.3 Stacked Conversion Mode
        4. 9.4.1.4 Continuous Conversion Mode
      2. 9.4.2 Alert Function
        1. 9.4.2.1 Alert Mode
        2. 9.4.2.2 Comparator Mode
      3. 9.4.3 1-Wire Interface Communication
        1. 9.4.3.1 Bus Reset Phase
        2. 9.4.3.2 Address Phase
          1. 9.4.3.2.1 READADDR (33h)
          2. 9.4.3.2.2 MATCHADDR (55h)
          3. 9.4.3.2.3 SEARCHADDR (F0h)
          4. 9.4.3.2.4 ALERTSEARCH (ECh)
          5. 9.4.3.2.5 SKIPADDR (CCh)
          6. 9.4.3.2.6 OVD SKIPADDR (3Ch)
          7. 9.4.3.2.7 OVD MATCHADDR (69h)
          8. 9.4.3.2.8 FLEXADDR (0Fh)
        3. 9.4.3.3 Function Phase
          1. 9.4.3.3.1  CONVERTTEMP (44h)
          2. 9.4.3.3.2  WRITE SCRATCHPAD-1 (4Eh)
          3. 9.4.3.3.3  READ SCRATCHPAD-1 (BEh)
          4. 9.4.3.3.4  COPY SCRATCHPAD-1 (48h)
          5. 9.4.3.3.5  WRITE SCRATCHPAD-2 (0Fh)
          6. 9.4.3.3.6  READ SCRATCHPAD-2 (AAh)
          7. 9.4.3.3.7  COPY SCRATCHPAD-2 (55h)
          8. 9.4.3.3.8  READ EEPROM (F0h)
          9. 9.4.3.3.9  GPIO WRITE (A5h)
          10. 9.4.3.3.10 GPIO READ (F5h)
      4. 9.4.4 NVM Operations
        1. 9.4.4.1 Programming User Data
        2. 9.4.4.2 Register and Memory Protection
          1. 9.4.4.2.1 Scratchpad-1 Register Protection
          2. 9.4.4.2.2 User Memory Protection
    5. 9.5 Programming
      1. 9.5.1 Single Device Temperature Conversion and Read
      2. 9.5.2 Multiple Device Temperature Conversion and Read
      3. 9.5.3 Register Scratchpad-1 Update and Commit
      4. 9.5.4 Single Device EEPROM Programming and Verify
      5. 9.5.5 Single Device EEPROM Page Lock Operation
      6. 9.5.6 Multiple Device IO Read
      7. 9.5.7 Multiple Device IO Write
    6. 9.6 Register Map
      1. 9.6.1  Temperature Result LSB Register (Scratchpad-1 offset = 00h) [reset = 00h]
      2. 9.6.2  Temperature Result MSB Register (Scratchpad-1 offset = 01h) [reset = 00h]
      3. 9.6.3  Status Register (Scratchpad-1 offset = 02h) [reset = 3Ch]
      4. 9.6.4  Device Configuration-1 Register (Scratchpad-1 offset = 04h) [reset = 70h]
      5. 9.6.5  Device Configuration-2 Register (Scratchpad-1 offset = 05h) [reset = 80h]
      6. 9.6.6  Short Address Register (Scratchpad-1 offset = 06h) [reset = 00h]
      7. 9.6.7  Temperature Alert Low LSB Register (Scratchpad-1 offset = 08h) [reset = 00h]
      8. 9.6.8  Temperature Alert Low MSB Register (Scratchpad-1 offset = 09h) [reset = 00h]
      9. 9.6.9  Temperature Alert High LSB Register (Scratchpad-1 offset = 0Ah) [reset = F0h]
      10. 9.6.10 Temperature Alert High MSB Register (Scratchpad-1 offset = 0Bh) [reset = 07h]
      11. 9.6.11 Temperature Offset LSB Register (Scratchpad-1 offset = 0Ch) [reset = 00h]
      12. 9.6.12 Temperature Offset MSB Register (Scratchpad-1 offset = 0Dh) [reset = 00h]
      13. 9.6.13 IO Read Register [reset = F0h]
      14. 9.6.14 IO Configuration Register [reset = 00h]
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Bus Powered Application
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
      2. 10.2.2 Supply Powered Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
      3. 10.2.3 UART Interface for Communication
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Temperature Results

The conversion is initiated by the host MCU by sending the temperature conversion command if the automatic conversion is disabled, immediately after the presence detect is completed when the automatic conversion is enabled, or in continuous conversion mode if the device is VDD powered. At the end of every conversion, the device updates the temperature registers temperature result and the status register bits. Figure 9-2 shows that the device supports a high precision and legacy format, which can be configured through the TEMP_FMT bit in the device configuration-1 register. The default setting for the temperature result is legacy format for software compatibility.

GUID-20200706-SS0I-RTZM-KR9P-Q9RGNPWK7NBZ-low.gif Figure 9-2 Temperature Format

If the format selected is the high precision 16-bit format, the data in the result registers is stored in two's complement form and has a resolution of 7.8125m°C and a range of ±256°C. If the format selected is the legacy 12-bit format, the data in the result register is stored in sign extended form and has a resolution of 62.5m°C and a range of ±128°C. The temperature register reads as 0°C before the first conversion. Table 9-1 and Table 9-2 show examples of possible binary data that can be read from the temperature result registers and the corresponding hexadecimal and temperature equivalents for both formats.

Table 9-1 Precision (16-Bit) Temperature Data Format
TEMPERATURE
(°C)
DIGITAL OUTPUT (PRECISION FORMAT)
BINARY HEXADECIMAL
150 0100 1011 0000 0000 4B00
127 0011 1111 1000 0000 3F80
100 0011 0010 0000 0000 3200
25 0000 1100 1000 0000 0C80
1 0000 0000 1000 0000 0080
0.125 0000 0000 0001 0000 0010
0.03125 0000 0000 0000 0100 0004
0.0078125 0000 0000 0000 0001 0001
0 0000 0000 0000 0000 0000
–0.0078125 1111 1111 1111 1111 FFFF
–0.03125 1111 1111 1111 1100 FFFC
–0.125 1111 1111 1111 0000 FFF0
–1 1111 1111 1000 0000 FF80
–25 1111 0011 1000 0000 F380
–40 1110 1100 0000 0000 FC00
–55 1110 0100 1000 0000 F480
Table 9-2 Legacy (12-Bit) Temperature Data Format
TEMPERATURE
(°C)
DIGITAL OUTPUT
BINARY HEXADECIMAL
140 0000 0111 1111 1111 07FF
128 0000 0111 1111 1111 07FF
127.9375 0000 0111 1111 1111 07FF
100 0000 0110 0100 0000 0640
25 0000 0001 1001 0000 0190
1 0000 0000 0001 0000 0010
0.125 0000 0000 0000 0010 0002
0 0000 0000 0000 0000 0000
–0.125 1111 1111 1111 1110 FFFE
–1 1111 1111 1111 0000 FFF0
–25 1111 1110 0111 0000 FE70
–40 1111 1101 1000 0000 FD80
–55 1111 1100 1001 0000 FC90