SLVSH72 December   2023 TPS281C100

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SNS Timing Characteristics
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Device Functional Modes
    4. 8.4 Working Mode
    5. 8.5 Feature Description
      1. 8.5.1 Accurate Current Sense
        1. 8.5.1.1 High Accuracy Sense Mode
      2. 8.5.2 Programmable Current Limit
        1. 8.5.2.1 Short-Circuit and Overload Protection
        2. 8.5.2.2 Capacitive Charging
      3. 8.5.3 Inductive-Load Switching-Off Clamp
      4. 8.5.4 Inductive Load Demagnetization
      5. 8.5.5 Full Protections and Diagnostics
        1. 8.5.5.1 Open-Load Detection
        2. 8.5.5.2 Thermal Protection Behavior
        3. 8.5.5.3 Undervoltage Lockout (UVLO) Protection
        4. 8.5.5.4 Reverse Polarity Protection
        5. 8.5.5.5 Protection for MCU I/Os
        6. 8.5.5.6 Diagnostic Enable Function
        7. 8.5.5.7 Loss of Ground
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 IEC 61000-4-4 EFT
        2. 9.2.1.2 IEC 61000-4-5 Surge
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Selecting RILIM
        2. 9.2.2.2 Selecting RSNS
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 EMC Considerations
      2. 9.4.2 Layout Example
        1. 9.4.2.1 PWP Layout Without a GND Network
        2. 9.4.2.2 PWP Layout With a GND Network
        3. 9.4.2.3 DNT Layout Without a GND Network
      3. 9.4.3 Thermal Considerations
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DNT|12
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Working Mode

The four working modes in the device are normal mode, normal mode with diagnostics, idle mode and idle mode with diagnostics.

Normal mode is when EN is high and DIAG_EN is low. In this mode, VS is having quiescent current of IQ,VS, and the main FET is ON. With DIAG_EN low, no current sense information is available through the SNS pin.

Normal mode with Diagnostics is when both EN and DIAG_EN is high. In this mode, VS is having quiescent current of IQ,VS_DIAG, and the main FET is ON. With DIAG_EN high, current sense information will be available through the SNS pin.

Idle mode is when both EN and DIAG_EN low. In this mode, main FET is OFF, and VS is consuming a current of IIDLE,VS. There is extra current consumed in this state compared to the traditional shutdown state, due to having EFT detection circuitry being active. Additionally, there is a current sink at the output always active to keep the output near 0V. The output sink can sink up to IOUT(OFF,SINK).

Idle mode with diagnostics is when EN is low and DIAG_EN is high. In this mode, main FET is OFF, and VS is consuming a current of IIDLE,VS_DIAG. With DIAG_EN high, the output pullup circuitry is active for open-load and short-to-VS detection, and there is no active output sink.

GUID-20231204-SS0I-J7K8-LVPZ-7RXNXHBXH3WN-low.svg Figure 8-1 Work-Mode State Machine