JAJSM95A May   2023  – December 2023 DRV8845

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Operating Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Motor Configurations
      2. 7.3.2 Stepper Control Logic
      3. 7.3.3 DC Motor Control
      4. 7.3.4 PWM Current Control
      5. 7.3.5 Current Regulation and Decay Mode
      6. 7.3.6 Blanking Time
      7. 7.3.7 Charge Pump
      8. 7.3.8 Logic-Level Pin Diagram
      9. 7.3.9 Protection Circuits
        1. 7.3.9.1 VM Undervoltage Lockout (UVLO)
        2. 7.3.9.2 VCP Undervoltage Lockout (CPUV)
        3. 7.3.9.3 Overcurrent Protection (OCP)
        4. 7.3.9.4 Thermal Shutdown (OTSD)
        5. 7.3.9.5 Fault Condition Summary
    4. 7.4 Device Functional Modes
      1. 7.4.1 Sleep Mode (nSLEEP = 0)
      2. 7.4.2 Operating Mode (nSLEEP = 1)
      3. 7.4.3 nSLEEP Reset Pulse
      4. 7.4.4 Functional Modes Summary
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Application Schematics
    3. 8.3 Application Curves
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Bulk Capacitance
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout

  • A low-ESR ceramic capacitor must be placed in between the CP1 and CP2 pins. A value of 0.022 µF rated for VM is recommended. Place this component as close to the pins as possible.

  • A low-ESR ceramic capacitor must be placed in between the VM and VCP pins. A value of 0.22 µF rated for 16 V is recommended. Place this component as close to the pins as possible.

  • The device must be soldered directly onto the PCB. The thermal pad should be soldered directly to an exposed surface on the PCB. Thermal vias should be used to transfer heat to other layers of the PCB.

  • It is important to have a low impedance single-point ground located very close to the device. Connect the exposed pad and the ground plane directly under the device ground.

  • The input capacitors should be placed as close to the device supply pins as possible. The ceramic capacitor should be closer to the pins than the bulk capacitor.

  • The sense resistors should have a very low impedance path to ground. SENSEx pins should have very short traces to the sense resistors and very thick, low impedance traces directly to the ground underneath the device. Ensure that the maximum voltage on the sense pins do not exceed +/- 500 mV.