The TPS2412/13 controller, in conjunction with an external N-channel MOSFET, emulates the function of a low forward voltage diode. The TPS2412/13 can be used to combine multiple power supplies to a common bus in an N+1 configuration, or to combine redundant input power buses. The TPS2412 provides a linear turnon control while the TPS2413 has an on/off control method.
Applications for the TPS2412/13 include a wide range of systems including servers and telecom. These applications often have either N+1 redundant power supplies, redundant power buses, or both. Redundant power sources must have the equivalent of a diode OR to prevent reverse current during faults and hotplug. A TPS2412/13 and N-channel MOSFET provide this function with less power loss than a schottky diode.
Accurate voltage sensing and a programmable turnoff threshold allows operation to be tailored for a wide range of implementations and bus characteristics. The TPS2412/13 are lower pin count, reduced feature versions of the TPS2410/11.
The TPS2412/13 controller, in conjunction with an external N-channel MOSFET, emulates the function of a low forward voltage diode. The TPS2412/13 can be used to combine multiple power supplies to a common bus in an N+1 configuration, or to combine redundant input power buses. The TPS2412 provides a linear turnon control while the TPS2413 has an on/off control method.
Applications for the TPS2412/13 include a wide range of systems including servers and telecom. These applications often have either N+1 redundant power supplies, redundant power buses, or both. Redundant power sources must have the equivalent of a diode OR to prevent reverse current during faults and hotplug. A TPS2412/13 and N-channel MOSFET provide this function with less power loss than a schottky diode.
Accurate voltage sensing and a programmable turnoff threshold allows operation to be tailored for a wide range of implementations and bus characteristics. The TPS2412/13 are lower pin count, reduced feature versions of the TPS2410/11.