SNVSBW1B December   2021  – October 2023 LM63460-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1. 6.1 Wettable Flanks
    2. 6.2 Pinout Design for Clearance and FMEA
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Characteristics
    7. 7.7 Systems Characteristics
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Range (VIN1, VIN2)
      2. 8.3.2  Output Voltage Setpoint (FB)
      3. 8.3.3  Precision Enable and Input Voltage UVLO (EN/SYNC)
      4. 8.3.4  Frequency Synchronization (EN/SYNC)
      5. 8.3.5  Clock Locking
      6. 8.3.6  Adjustable Switching Frequency (RT)
      7. 8.3.7  Power-Good Monitor (PGOOD)
      8. 8.3.8  Bias Supply Regulator (VCC, BIAS)
      9. 8.3.9  Bootstrap Voltage and UVLO (CBOOT)
      10. 8.3.10 Spread Spectrum
      11. 8.3.11 Soft Start and Recovery From Dropout
      12. 8.3.12 Overcurrent and Short-Circuit Protection
      13. 8.3.13 Thermal Shutdown
      14. 8.3.14 Input Supply Current
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
        1. 8.4.3.1 CCM Mode
        2. 8.4.3.2 AUTO Mode – Light-Load Operation
          1. 8.4.3.2.1 Diode Emulation
          2. 8.4.3.2.2 Frequency Foldback
        3. 8.4.3.3 FPWM Mode – Light-Load Operation
        4. 8.4.3.4 Minimum On-Time (High Input Voltage) Operation
        5. 8.4.3.5 Dropout
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – Automotive Synchronous Buck Regulator at 2.1 MHz
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1  Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2  Setting the Output Voltage
          3. 9.2.1.2.3  Choosing the Switching Frequency
          4. 9.2.1.2.4  Inductor Selection
          5. 9.2.1.2.5  Output Capacitor Selection
          6. 9.2.1.2.6  Input Capacitor Selection
          7. 9.2.1.2.7  Bootstrap Capacitor
          8. 9.2.1.2.8  VCC Capacitor
          9. 9.2.1.2.9  BIAS Power Connection
          10. 9.2.1.2.10 Feedforward Network
          11. 9.2.1.2.11 Input Voltage UVLO
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2 – Automotive Synchronous Buck Regulator at 400 kHz
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Thermal Design and Layout
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design With WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Output Capacitor Selection

The value of the output capacitor and its ESR determine the output voltage ripple and load transient performance. The output capacitor is usually determined by load transient and stability requirements rather than the output voltage ripple. Use Table 9-4 to select the output capacitance and CFF feedforward capacitance values for a few common applications. Use a 1-kΩ RFF in series with CFF to further improve noise performance.

Table 9-4 Recommended Output Capacitors and CFF Values
CONFIGURATION 3.3-V OUTPUT 5-V OUTPUT
COUT CFF COUT CFF
2.1 MHz – Ceramic 4 × 22 µF, 16 V ceramic 10 pF 2 × 47 µF, 10-V ceramic 10 pF
2.1 MHz – Alternative 2 × 22 µF, 16-V ceramic + 100 µF, 10-mΩ electrolytic 2 × 47 µF, 10-V ceramic + 100 µF, 10-mΩ electrolytic
400 kHz – Ceramic 5 × 22 µF, 16-V ceramic 15 pF 3 × 47 µF, 10-V ceramic 15 pF
400 kHz – Alternative 2 × 22 µF, 16-V ceramic + 100 µF, 10-mΩ electrolytic 1 × 47 µF, 10 V ceramic + 100 µF, 10-mΩ electrolytic
Note:

Most ceramic capacitors deliver less capacitance than the rating of the capacitor indicates. Be sure to check selected capacitors for initial accuracy, temperature derating, and particularly voltage derating. Table 9-4 assumes typical derating for X7R-dielectric capacitors. If lower voltage or lower temperature-rated capacitors are used, more capacitance than listed can be required.

More conveniently, Equation 10 calculates the required effective ceramic capacitance for a given application:

Equation 10. GUID-20211213-SS0I-HKNZ-P3HS-JZQFGV5K8BVL-low.svg

where FC is the target loop crossover frequency in units of kHz, which can be set at 10% to 15% of switching frequency and up to a maximum of 100 kHz.

This example requires improved transient performance, resulting in two 47-µF, 10-V, X7R ceramics as the output capacitance and 10 pF for CFF. An alternative configuration is to use a low-ESR electrolytic capacitor in parallel with a reduced ceramic capacitance.