SNWS014D March   2004  – June 2025 LMV242 , LMV2421

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Electrical Characteristics for 2.6V
    4. 5.4 Electrical Characteristics for 5V
    5. 5.5 Timing Diagram
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Functional Block Diagram
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power-Control Principles
      2. 7.1.2 Power Amplifier Controlled Loop
        1. 7.1.2.1 General Overview
        2. 7.1.2.2 Typical PA Closed Loop Control Setup
          1. 7.1.2.2.1 Power Control Over Wide Dynamic Range
      3. 7.1.3 Attenuation Between the Coupler and LMV242x Detector
      4. 7.1.4 Control of the LMV242x
        1. 7.1.4.1 VRAMP Signal
        2. 7.1.4.2 Transmit Enable
        3. 7.1.4.3 Band Select (LMV242 Only)
        4. 7.1.4.4 Analog Output
      5. 7.1.5 Frequency Compensation
    2. 7.2 Typical Application
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • NGY|10
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Analog Output

The output is driven by a rail-to-rail amplifier capable of both sourcing and sinking. Several curves are given in Section 5.6 regarding the output. The output voltage versus sourcing and sinking current curves show the typical voltage drop from the rail over temperature. The sourcing and sinking current versus output voltage characteristics show the typical charging and discharging currents, which the output is capable of delivering at a certain voltage. The output is free from glitches when enabled by TX_EN. When TX_EN is low, the selected output voltage is fixed or near ground.