SNWS014D March   2004  – June 2025 LMV242 , LMV2421

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 Recommended Operating Conditions
    3. 5.3 Electrical Characteristics for 2.6V
    4. 5.4 Electrical Characteristics for 5V
    5. 5.5 Timing Diagram
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Functional Block Diagram
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power-Control Principles
      2. 7.1.2 Power Amplifier Controlled Loop
        1. 7.1.2.1 General Overview
        2. 7.1.2.2 Typical PA Closed Loop Control Setup
          1. 7.1.2.2.1 Power Control Over Wide Dynamic Range
      3. 7.1.3 Attenuation Between the Coupler and LMV242x Detector
      4. 7.1.4 Control of the LMV242x
        1. 7.1.4.1 VRAMP Signal
        2. 7.1.4.2 Transmit Enable
        3. 7.1.4.3 Band Select (LMV242 Only)
        4. 7.1.4.4 Analog Output
      5. 7.1.5 Frequency Compensation
    2. 7.2 Typical Application
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • NGY|10
Thermal pad, mechanical data (Package|Pins)
Orderable Information

VRAMP Signal

The actual VRAMP input value sets the RF output power of the system. By applying a certain mask shape to the VRAMP pin, the output voltage level of the LMV242x is adjusting the PA control voltage to get a power level (POUT/dBm) out of the PA, which is proportional to the single ramp voltage steps. The recommended VRAMP voltage range for RF power control is 0.2V to 2.0V. The VRAMP input tolerates voltages from 0V to VDD without malfunction or damage. The VRAMP input does not change the output level until the level reaches approximately 206mV; therefore offset voltages in the DAC or amplifier supplying the VRAMP signal do not cause excess RF signal output and increased power consumption.