SNVSCJ1 August   2023 LV5144

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Description (continued)
  7. Pin Configuration and Functions
    1. 6.1 Wettable Flanks
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Range (VIN)
      2. 8.3.2  Output Voltage Setpoint and Accuracy (FB)
      3. 8.3.3  High-Voltage Bias Supply Regulator (VCC)
      4. 8.3.4  Precision Enable (EN/UVLO)
      5. 8.3.5  Power Good Monitor (PGOOD)
      6. 8.3.6  Switching Frequency (RT, SYNCIN)
        1. 8.3.6.1 Frequency Adjust
        2. 8.3.6.2 Clock Synchronization
      7. 8.3.7  Configurable Soft Start (SS/TRK)
        1. 8.3.7.1 Tracking
      8. 8.3.8  Voltage-Mode Control (COMP)
      9. 8.3.9  Gate Drivers (LO, HO)
      10. 8.3.10 Current Sensing and Overcurrent Protection (ILIM)
      11. 8.3.11 OCP Duty Cycle Limiter
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
      4. 8.4.4 Diode Emulation Mode
      5. 8.4.5 Thermal Shutdown
  10. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Design and Implementation
      2. 9.1.2 Power Train Components
        1. 9.1.2.1 Inductor
        2. 9.1.2.2 Output Capacitors
        3. 9.1.2.3 Input Capacitors
        4. 9.1.2.4 Power MOSFETs
      3. 9.1.3 Control Loop Compensation
      4. 9.1.4 EMI Filter Design
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – 12-A High-Efficiency Synchronous Buck DC/DC Regulator
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2 – High Density, 12-V, 8-A Rail From 48-V Telecom Power
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Power Stage Layout
        2. 9.4.1.2 Gate Drive Layout
        3. 9.4.1.3 PWM Controller Layout
        4. 9.4.1.4 Thermal Design and Layout
        5. 9.4.1.5 Ground Plane Design
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
        1. 10.2.1.1 PCB Layout Resources
        2. 10.2.1.2 Thermal Design Resources
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

A high power density, high-efficiency regulator design uses 100-V power MOSFETs in SON 5-mm × 6-mm packages, together with a low-DCR inductor and all-ceramic capacitor design. The design occupies a footprint of 30 mm × 15 mm on a single-sided PCB. The overcurrent (OC) setpoint in this design is set at 12 A based on the resistor RILIM and the 10-mΩ RDS(on) of the low-side MOSFET (typical at TJ = 25°C and VGS = 10 V). The 12-V output is connected to VCC through a diode, D1, to reduce IC bias power dissipation at high input voltages.

The selected buck converter powertrain components are cited in Table 9-8, including power MOSFETs, buck inductor, input and output capacitors, and ICs. Using the LV5144 Quickstart Calculator, compensation components are selected based on a target loop crossover frequency of 40 kHz and phase margin greater than 55°. The output voltage soft-start time is 6 ms based on the selected soft-start capacitance, CSS, of 47 nF.

Table 9-8 List of Materials for Application Circuit 2
REFERENCE DESIGNATORQTYSPECIFICATIONMANUFACTURERPART NUMBER
CIN52.2 µF, 100 V, X7R, 1210, ceramicTDKCGA6N3X7R2A225K
Taiyo YudenHMK325B7225KM-P
2.2 µF, 100 V, X7S, 1206, ceramicMurataGCM31CC72A225KE02
COUT522 µF, 25 V, X7R, 1210, ceramicTDKCGA6P3X7R1E226M
MurataGCM32EC71E226KE36
Taiyo YudenTMK325B7226KMHT
LF16.8 µH, 12 mΩ, 13.3 A, 10.85 × 10.0 × 5.2 mmCyntecVCHA105D-6R8MS6
6.8 µH, 13.3 mΩ, 21.4 A, 10.5 × 10.0 × 6.5 mmTDKSPM10065VT-6R8M-D
Q11100 V, 22 mΩ, MOSFET, SON 5 × 6OnsemiNVMFS6B25NLT1G
Q21100 V, 10 mΩ, MOSFET, SON 5 × 6OnsemiNVMFS6B14NLT1G
U11Wide VIN synchronous buck controllerTexas InstrumentsLV5144RGYR

As shown in Figure 9-16, a 2.2-Ω resistor in series with CBST is used to slow the turn-on transition of the high-side MOSFET, reducing the spike amplitude and ringing of the SW node voltage and minimizing the possibility of Cdv/dt-induced shoot-through of the low-side MOSFET. If needed, place an RC snubber (for example, 2.2 Ω and 100 pF) close to the drain (SW node) and source (PGND) terminals of the low-side MOSFET to further attenuate any SW node voltage overshoot or ringing. Please refer to the application note Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics for more detail.