SBOSAA5B April   2022  – September 2022 OPA2675

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Family Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: Full Bias and Offline Mode VS = ±6 V
    6. 7.6  Electrical Characteristics: 75% Bias Mode VS = ±6 V
    7. 7.7  Electrical Characteristics: 50% Bias Mode VS = ±6 V
    8. 7.8  Electrical Characteristics: DIfferential Output  VS = 12 V
    9. 7.9  Electrical Characteristics: VS = 5 V
    10. 7.10 Typical Characteristics: VS = ±6 V, Full Bias
    11. 7.11 Typical Characteristics: VS = ±6 V Differential, Full Bias
    12. 7.12 Typical Characteristics: VS = ±6 V, 75% Bias
    13. 7.13 Typical Characteristics: VS = ±6 V, 50% Bias
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Suggestions
        1. 8.3.1.1 Setting Resistor Values to Optimize Bandwidth
        2. 8.3.1.2 Output Current and Voltage
        3. 8.3.1.3 Driving Capacitive Loads
        4. 8.3.1.4 Line Driver Headroom Model
        5. 8.3.1.5 Noise Performance
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 High-Speed Active Filters
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Thermal Analysis
    2. 10.2 Input and ESD Protection
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Analysis

As a result of the high output power capability of the OPA2675, heat-sinking or forced airflow may be required under extreme operating conditions. The maximum desired junction temperature sets the maximum allowed internal power dissipation, and is described in the following paragraph. The maximum junction temperature allowed should not exceed +150°C.

Operating junction temperature (TJ) is given by

Equation 13. TJ = TA + PD × θJA
The total internal power dissipation (PD) is the sum of quiescent power (PDQ) and additional power dissipation in the output stage (PDL) to deliver load power. Quiescent power is the specified no-load supply current times the total supply voltage across the part. PDL depends on the required output signal and load; for a grounded resistive load, however, PDL is at a maximum when the output is fixed at a voltage equal to 1/2 of either supply voltage (for equal bipolar supplies). Under this condition,
Equation 14. PDL = VS2 / (4 × RL),
where RL includes feedback network loading.

Equation 14 is the power dissipated at the output stage of OPA2675 that determines the internal power dissipation.

As a worst-case example, compute the maximum TJ using an OPA2675 VQFN-16 in the circuit of Figure 8-1 operating at the maximum specified ambient temperature of +85°C with both outputs driving a grounded 20 Ω load to +2.5 V.

Equation 15. PD = 12 V × 33 mA + 2 × [52 / (4 × [20 Ω ∥ 535 Ω])] = 1.05 W
Equation 16. Maximum TJ = +85°C + (1.05 × 45°C/W) = 132.2°C

The output V-I plot in Output Current and Voltage includes a boundary for 2-W maximum internal power dissipation under these conditions.