SLVSER6B May   2020  – November 2020 TPS23730

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics: DC-DC Controller Section
    6. 7.6 Electrical Characteristics PoE
    7.     14
    8. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  CLSA, CLSB Classification
      2. 8.3.2  DEN Detection and Enable
      3. 8.3.3  APD Auxiliary Power Detect
      4. 8.3.4  PPD Power Detect
      5. 8.3.5  Internal Pass MOSFET
      6. 8.3.6  TPH, TPL and BT PSE Type Indicators
      7. 8.3.7  DC-DC Controller Features
        1. 8.3.7.1 VCC, VB, VBG and Advanced PWM Startup
        2.       28
        3. 8.3.7.2 CS, Current Slope Compensation and Blanking
        4. 8.3.7.3 COMP, FB, EA_DIS, CP, PSRS and Opto-less Feedback
        5. 8.3.7.4 FRS Frequency Setting and Synchronization
        6. 8.3.7.5 DTHR and Frequency Dithering for Spread Spectrum Applications
        7. 8.3.7.6 SST and Soft-Start of the Switcher
        8. 8.3.7.7 SST, I_STP, LINEUV and Soft-Stop of the Switcher
      8. 8.3.8  Switching FET Driver - GATE, GTA2, DT
      9. 8.3.9  EMPS and Automatic MPS
      10. 8.3.10 VDD Supply Voltage
      11. 8.3.11 RTN, AGND, GND
      12. 8.3.12 VSS
      13. 8.3.13 Exposed Thermal pads - PAD_G and PAD_S
    4. 8.4 Device Functional Modes
      1. 8.4.1  PoE Overview
      2. 8.4.2  Threshold Voltages
      3. 8.4.3  PoE Start-Up Sequence
      4. 8.4.4  Detection
      5. 8.4.5  Hardware Classification
      6. 8.4.6  Maintain Power Signature (MPS)
      7. 8.4.7  Advanced Start-Up and Converter Operation
      8. 8.4.8  Line Undervoltage Protection and Converter Operation
      9. 8.4.9  PD Self-Protection
      10. 8.4.10 Thermal Shutdown - DC-DC Controller
      11. 8.4.11 Adapter ORing
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Detailed Design Procedure
          1. 9.2.1.1.1  Input Bridges and Schottky Diodes
          2. 9.2.1.1.2  Input TVS Protection
          3. 9.2.1.1.3  Input Bypass Capacitor
          4. 9.2.1.1.4  Detection Resistor, RDEN
          5. 9.2.1.1.5  Classification Resistor, RCLSA and RCLSB.
          6. 9.2.1.1.6  Dead Time Resistor, RDT
          7. 9.2.1.1.7  APD Pin Divider Network, RAPD1, RAPD2
          8. 9.2.1.1.8  PPD Pin Divider Network, RPPD1, RPPD2
          9. 9.2.1.1.9  Setting Frequency (RFRS) and Synchronization
          10. 9.2.1.1.10 Bias Supply Requirements and CVCC
          11. 9.2.1.1.11 TPH, TPL, and BT Interface
          12. 9.2.1.1.12 Secondary Soft Start
          13. 9.2.1.1.13 Frequency Dithering for Conducted Emissions Control
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 EMI Containment
    4. 11.4 Thermal Considerations and OTSD
    5. 11.5 ESD
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Internal Pass MOSFET

RTN pin provides the negative power return path for the load. It is internally connected to the drain of the PoE hotswap MOSFET, and the DC-DC controller return. RTN must be treated as a local reference plane (ground plane) for the DC-DC controller and converter primary to maintain signal integrity.

Once VVDD exceeds the UVLO threshold, the internal pass MOSFET pulls RTN to VSS. Inrush limiting prevents the RTN current from exceeding a nominal value of about 140 mA until the bulk capacitance (CBULK in Figure 9-1) is fully charged. Two conditions must be met to reach the end of inrush phase. The first one is when the RTN current drops below about 90% of nominal inrush current at which point the current limit is changed to 1.85 A, while the second one is to ensure a minimum inrush delay period of 80 ms (tINR_DEL) from beginning of the inrush phase. DC-DC converter switching is permitted once both inrush conditions are met, meaning that the bulk capacitance is fully charged and the inrush period has been completed.

If VRTN - VVSS ever exceeds about 14.8 V for longer than 1.8 ms, then the PD returns to inrush limiting; note that in this particular case, the second condition described above about inrush phase duration (80 ms) is not applicable