SGLS346A June   2006  – August 2025 TPS73201-EP , TPS73215-EP , TPS73216-EP , TPS73218-EP , TPS73225-EP , TPS73230-EP , TPS73233-EP , TPS73250-EP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2.     Power Dissipation Ratings
    3. 5.2 Electrical Characteristics
    4. 5.3 Typical Characteristics
  7. Functional Block Diagrams
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1  Input and Output Capacitor Requirements
      2. 7.1.2  Output Noise
      3. 7.1.3  Board Layout Recommendation to Improve PSRR and Noise Performance
      4. 7.1.4  Internal Current Limit
      5. 7.1.5  Shutdown
      6. 7.1.6  Dropout Voltage
      7. 7.1.7  Transient Response
      8. 7.1.8  Reverse Current
      9. 7.1.9  Thermal Protection
      10. 7.1.10 Power Dissipation
      11. 7.1.11 Package Mounting
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Device Nomenclature
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Dropout Voltage

The TPS732xx-EP uses an NMOS pass transistor to achieve extremely low dropout. When (VIN  – VOUT) is less than the dropout voltage (VDO), the NMOS pass device is in its linear region of operation and the input-to-output resistance is the RDS-ON of the NMOS pass element.

For large step changes in load current, the TPS732xx-EP requires a larger voltage drop from VIN to VOUT to avoid degraded transient response. The boundary of this transient dropout region is approximately twice the dc dropout. Values of VIN  – VOUT above this line insure normal transient response.

Operating in the transient dropout region can cause an increase in recovery time. The time required to recover from a load transient is a function of the magnitude of the change in load current rate, the rate of change in load current, and the available headroom (VIN to VOUT voltage drop). Under worst-case conditions [full-scale instantaneous load change with (VIN  – VOUT) close to dc dropout levels], the TPS732xx-EP can take a couple of hundred microseconds to return to the specified regulation accuracy.