SGLS346A June   2006  – August 2025 TPS73201-EP , TPS73215-EP , TPS73216-EP , TPS73218-EP , TPS73225-EP , TPS73230-EP , TPS73233-EP , TPS73250-EP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2.     Power Dissipation Ratings
    3. 5.2 Electrical Characteristics
    4. 5.3 Typical Characteristics
  7. Functional Block Diagrams
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1  Input and Output Capacitor Requirements
      2. 7.1.2  Output Noise
      3. 7.1.3  Board Layout Recommendation to Improve PSRR and Noise Performance
      4. 7.1.4  Internal Current Limit
      5. 7.1.5  Shutdown
      6. 7.1.6  Dropout Voltage
      7. 7.1.7  Transient Response
      8. 7.1.8  Reverse Current
      9. 7.1.9  Thermal Protection
      10. 7.1.10 Power Dissipation
      11. 7.1.11 Package Mounting
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Device Nomenclature
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Reverse Current

The NMOS pass element of the TPS732xx-EP provides inherent protection against current flow from the output of the regulator to the input when the gate of the pass device is pulled low. To ensure that all charge is removed from the gate of the pass element, the enable pin must be driven low before the input voltage is removed. If this is not done, the pass element may be left on due to stored charge on the gate.

After the enable pin is driven low, no bias voltage is needed on any pin for reverse current blocking. Note that reverse current is specified as the current flowing out of the IN pin due to voltage applied on the OUT pin. There will be additional current flowing into the OUT pin due to the 80-kΩ internal resistor divider to ground (see the Functional Block Diagrams section).

For the TPS73201, reverse current may flow when VFB is more than 1 V above VIN.