SBVS263B July   2017  – June 2025 TPS7A39

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Start-Up Characteristics
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Voltage Regulation
        1. 6.3.1.1 DC Regulation
        2. 6.3.1.2 AC and Transient Response
      2. 6.3.2 User-Settable Buffered Reference
      3. 6.3.3 Active Discharge
      4. 6.3.4 System Start-Up Controls
        1. 6.3.4.1 Start-Up Tracking
        2. 6.3.4.2 Sequencing
          1. 6.3.4.2.1 Enable (EN)
          2. 6.3.4.2.2 Undervoltage Lockout (UVLO) Control
    4. 6.4 Device Functional Modes
      1. 6.4.1 Normal Operation
      2. 6.4.2 Dropout Operation
      3. 6.4.3 Disabled
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1  Setting the Output Voltages on Adjustable Devices
      2. 7.1.2  Capacitor Recommendations
      3. 7.1.3  Input and Output Capacitor (CINx and COUTx)
      4. 7.1.4  Feed-Forward Capacitor (CFFx)
      5. 7.1.5  Noise-Reduction and Soft-Start Capacitor (CNR/SS)
      6. 7.1.6  Buffered Reference Voltage
      7. 7.1.7  Overriding Internal Reference
      8. 7.1.8  Start-Up
        1. 7.1.8.1 Soft-Start Control (NR/SS)
          1. 7.1.8.1.1 In-Rush Current
        2. 7.1.8.2 Undervoltage Lockout (UVLOx) Control
      9. 7.1.9  AC and Transient Performance
        1. 7.1.9.1 Power-Supply Rejection Ratio (PSRR)
        2. 7.1.9.2 Channel-to-Channel Output Isolation and Crosstalk
        3. 7.1.9.3 Output Voltage Noise
        4. 7.1.9.4 Optimizing Noise and PSRR
        5. 7.1.9.5 Load Transient Response
      10. 7.1.10 DC Performance
        1. 7.1.10.1 Output Voltage Accuracy (VOUT x)
        2. 7.1.10.2 Dropout Voltage (VDO)
      11. 7.1.11 Reverse Current
      12. 7.1.12 Power Dissipation (PD)
        1. 7.1.12.1 Estimating Junction Temperature
    2. 7.2 Typical Applications
      1. 7.2.1 Design 1: Single-Ended to Differential Isolated Supply
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Switcher Choice
          2. 7.2.1.2.2 Full Bridge Rectifier With Center-Tapped Transformer
          3. 7.2.1.2.3 Total Solution Efficiency
          4. 7.2.1.2.4 Feedback Resistor Selection
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Design 2: Getting the Full Range of a SAR ADC
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Detailed Design Description
          1. 7.2.2.3.1 Regulation of –0.2V
          2. 7.2.2.3.2 Feedback Resistor Selection
        4. 7.2.2.4 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance
        2. 7.4.1.2 Package Mounting
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Evaluation Modules
        2. 8.1.1.2 Spice Models
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Design Requirements

A common problem in analog-to-digital converters (ADCs) is that as the input signal approaches the edge of the range of the ADC, the signal begins to become distorted. Often times this is not because of a limitation of the ADC, but is a result of the analog front-end (AFE). In the AFE, the signal begins to approach the rails of the op amp and the signal begins to lose linearity and becomes distorted. This distortion is because when the rail-to-rail op amp begins to enter the nonlinear region of operation within 100mV of the rail, the signal-to-noise ratio (SNR) starts to degrade and the total harmonic distortion (THD) of the ADC increases. To prevent the op amp from exiting the linear region of operation, the design must use a power supply that can generate rails 200mV above and below the input range of the ADC.