SBVS263B July   2017  – June 2025 TPS7A39

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Start-Up Characteristics
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Voltage Regulation
        1. 6.3.1.1 DC Regulation
        2. 6.3.1.2 AC and Transient Response
      2. 6.3.2 User-Settable Buffered Reference
      3. 6.3.3 Active Discharge
      4. 6.3.4 System Start-Up Controls
        1. 6.3.4.1 Start-Up Tracking
        2. 6.3.4.2 Sequencing
          1. 6.3.4.2.1 Enable (EN)
          2. 6.3.4.2.2 Undervoltage Lockout (UVLO) Control
    4. 6.4 Device Functional Modes
      1. 6.4.1 Normal Operation
      2. 6.4.2 Dropout Operation
      3. 6.4.3 Disabled
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1  Setting the Output Voltages on Adjustable Devices
      2. 7.1.2  Capacitor Recommendations
      3. 7.1.3  Input and Output Capacitor (CINx and COUTx)
      4. 7.1.4  Feed-Forward Capacitor (CFFx)
      5. 7.1.5  Noise-Reduction and Soft-Start Capacitor (CNR/SS)
      6. 7.1.6  Buffered Reference Voltage
      7. 7.1.7  Overriding Internal Reference
      8. 7.1.8  Start-Up
        1. 7.1.8.1 Soft-Start Control (NR/SS)
          1. 7.1.8.1.1 In-Rush Current
        2. 7.1.8.2 Undervoltage Lockout (UVLOx) Control
      9. 7.1.9  AC and Transient Performance
        1. 7.1.9.1 Power-Supply Rejection Ratio (PSRR)
        2. 7.1.9.2 Channel-to-Channel Output Isolation and Crosstalk
        3. 7.1.9.3 Output Voltage Noise
        4. 7.1.9.4 Optimizing Noise and PSRR
        5. 7.1.9.5 Load Transient Response
      10. 7.1.10 DC Performance
        1. 7.1.10.1 Output Voltage Accuracy (VOUT x)
        2. 7.1.10.2 Dropout Voltage (VDO)
      11. 7.1.11 Reverse Current
      12. 7.1.12 Power Dissipation (PD)
        1. 7.1.12.1 Estimating Junction Temperature
    2. 7.2 Typical Applications
      1. 7.2.1 Design 1: Single-Ended to Differential Isolated Supply
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Switcher Choice
          2. 7.2.1.2.2 Full Bridge Rectifier With Center-Tapped Transformer
          3. 7.2.1.2.3 Total Solution Efficiency
          4. 7.2.1.2.4 Feedback Resistor Selection
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Design 2: Getting the Full Range of a SAR ADC
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Detailed Design Description
          1. 7.2.2.3.1 Regulation of –0.2V
          2. 7.2.2.3.2 Feedback Resistor Selection
        4. 7.2.2.4 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Board Layout Recommendations to Improve PSRR and Noise Performance
        2. 7.4.1.2 Package Mounting
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Evaluation Modules
        2. 8.1.1.2 Spice Models
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Undervoltage Lockout (UVLOx) Control

The UVLOx circuit makes sure that the device stays disabled before the input or bias supplies reach the minimum operational voltage range, and makes sure that the device properly shuts down when the input supply collapses.

Figure 7-2 and Table 7-3 explain the UVLOx circuit response to various input voltage events, assuming VEN ≥ VIH(EN).

The positive and negative UVLO circuits are internally ANDed together. As such, if either supply collapses, both outputs turn-off and VNR/SS is pulled low internally.

TPS7A39 Typical UVLOx OperationFigure 7-2 Typical UVLOx Operation
Table 7-3 Typical UVLOx Operation Description
REGION EVENT VOUTx STATUS COMMENT
A Turn-on, |VINx| ≤ |VUVLOx| 0 Start-up
B Regulation 1 Regulates to target VOUTx
C Brownout,|VINx| ≥ |VUVLOx – VHYSx| 1 The output can fall out of regulation but the device is still enabled
D Regulation 1 Regulates to target VOUTx
E Brownout, |VINx| < |VUVLOx – VHYSx| 0 The device is disabled and the output falls because of the load and active discharge circuit. The device is reenabled when the UVLOx rising threshold is reached by the input voltage and a normal start-up then follows.
F Regulation 1 Regulates to target VOUTx
G Turn-off, |VINx| < |VUVLOx – VHYSx| 0 The output falls because of the load and active discharge circuit

Similar to many other LDOs with this feature, the UVLOx circuit takes a few microseconds to fully assert. During this time, a downward line transient below approximately 0.8V causes the UVLOx to assert for a short time; however, the UVLOx circuit does not have enough stored energy to fully discharge the internal circuits inside of the device. When the UVLOx circuit is not given enough time to fully discharge the internal nodes, the outputs are not fully disabled.

The effect of the downward line transient can be mitigated by using a larger input capacitor to increase the fall time of the input supply when operating near the minimum VINx.