SLLSFT3 November   2025 MC121-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Timing Requirements
    7. 5.7 Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Motor Control
        1. 6.3.1.1 Duty Input
        2. 6.3.1.2 Duty Curve
        3. 6.3.1.3 Motor Start, Speed Change, and Stop
        4. 6.3.1.4 Open-Loop (Duty Cycle) Control
        5. 6.3.1.5 Closed-Loop (Speed) Control
        6. 6.3.1.6 Commutation
          1. 6.3.1.6.1 Hall Sensor
            1. 6.3.1.6.1.1 Field Direction Definition
            2. 6.3.1.6.1.2 Internal Hall Latch Sensor Output
          2. 6.3.1.6.2 Hall Offset
          3. 6.3.1.6.3 Square Commutation
          4. 6.3.1.6.4 Soft Commutation
        7. 6.3.1.7 PWM Modulation Modes
      2. 6.3.2 Protections
        1. 6.3.2.1 Locked Rotor Protection
        2. 6.3.2.2 Current Limit
        3. 6.3.2.3 Overcurrent Protection (OCP)
        4. 6.3.2.4 VM Undervoltage Lockout (UVLO)
        5. 6.3.2.5 VM Over Voltage Protection (OVP)
        6. 6.3.2.6 Thermal Shutdown (TSD)
        7. 6.3.2.7 Integrated Supply (VM) Clamp
    4. 6.4 Device Functional Modes
      1. 6.4.1 Active Mode
      2. 6.4.2 Sleep and Standby Mode
      3. 6.4.3 Fault Mode
      4. 6.4.4 Test Mode and One-Time Programmable Memory
    5. 6.5 Programming
      1. 6.5.1 I2C Communication
        1. 6.5.1.1 I2C Read
        2. 6.5.1.2 I2C Write
  8. Register Map
    1. 7.1 USR_OTP Registers
    2. 7.2 USR_TM Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 External Components
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Bulk Capacitance
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
  • DYM|6
  • DEZ|6
サーマルパッド・メカニカル・データ
発注情報

Detailed Design Procedure

Motor Voltage

Single phase Brushless-DC motors are typically rated for a certain voltage (for example 12 V or 24 V). Operating a motor at a higher voltage corresponds to a lower drive current to obtain the same motor power. A higher operating voltage also corresponds to a higher obtainable rpm. The MC121-Q1 allows for a range of possible operating voltages from 3.2V to 35V.

Device configuration settings

Default OTP configuration for MC121-Q1 is listed in Table 7-1 . Default values are chosen for reliable motor startup and closed loop operation. Refer toMC121-Q1 tuning and programming guide which provides step by step procedure to tune a single-phase BLDC motor in both open loop and closed loop configurations, and explore features in the device.

Table 8-2 Recommended OTP configuration Values (changes from default)
Register Values Name Recommended Value
PWM_IN_RANGE 1h
FGRD_INVERT 1h
FGRD_MODE 1h
PWM_MODE 7h
SILENCE_ANGLE 4h
ILIMIT_SEL 9h

Once the device OTP is programmed with the desired configuration, device can be operated stand-alone and I2C serial interface is not required anymore. Speed can be commanded using PWM/DC pin and locked rotor faults can be monitored using the FG/RD pin.

Power Dissipation and Junction Temperature Losses

To calculate the junction temperature of the MC121-Q1 from power losses, use Equation 1. Note that the thermal resistance θJA depends on PCB configurations such as the ambient temperature, numbers of PCB layers, copper thickness on top and bottom layers, and the PCB area.

Equation 1. T J = P l o s s W ×   θ J A W + T A [ ]