JAJSPX7E February   2023  – April 2024 TLV709

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. ピン構成および機能
  6. 仕様
    1. 5.1 絶対最大定格
    2. 5.2 ESD 定格
    3. 5.3 推奨動作条件
    4. 5.4 熱に関する情報
    5. 5.5 電気的特性
    6. 5.6 代表的特性
  7. 詳細説明
    1. 6.1 概要
    2. 6.2 機能ブロック図
    3. 6.3 機能説明
      1. 6.3.1 広い電源電圧範囲
      2. 6.3.2 低静止電流
      3. 6.3.3 ドロップアウト電圧 (VDO)
      4. 6.3.4 電流制限
      5. 6.3.5 リーク電流のヌル制御回路
    4. 6.4 デバイスの機能モード
      1. 6.4.1 通常動作
      2. 6.4.2 ドロップアウト動作
  8. アプリケーションと実装
    1. 7.1 アプリケーション情報
    2. 7.2 代表的なアプリケーション
      1. 7.2.1 設計要件
      2. 7.2.2 詳細な設計手順
        1. 7.2.2.1 TLV70901 可変 LDO の VOUT の設定
        2. 7.2.2.2 外部コンデンサの要件
        3. 7.2.2.3 入出力コンデンサの要件
        4. 7.2.2.4 逆電流
        5. 7.2.2.5 フィードフォワード コンデンサ (CFF)
        6. 7.2.2.6 消費電力 (PD)
        7. 7.2.2.7 推定接合部温度
    3. 7.3 設計のベスト プラクティス
    4. 7.4 電源に関する推奨事項
    5. 7.5 レイアウト
      1. 7.5.1 レイアウトのガイドライン
        1. 7.5.1.1 電力散逸
      2. 7.5.2 レイアウト例
  9. デバイスおよびドキュメントのサポート
    1. 8.1 デバイスのサポート
      1. 8.1.1 開発サポート
        1. 8.1.1.1 評価基板
        2. 8.1.1.2 SPICE モデル
      2. 8.1.2 デバイス命名規則
    2. 8.2 ドキュメントのサポート
      1. 8.2.1 関連資料
    3. 8.3 ドキュメントの更新通知を受け取る方法
    4. 8.4 サポート・リソース
    5. 8.5 商標
    6. 8.6 静電気放電に関する注意事項
    7. 8.7 用語集
  10. 改訂履歴
  11. 10メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

消費電力 (PD)

回路の信頼性を確保するには、デバイスの消費電力、プリント基板 (PCB) 上の回路の位置、およびサーマル プレーンの適切なサイズを考慮する必要があります。レギュレータの周囲の PCB 領域には、熱ストレスを増大させるその他の発熱デバイスが、ほとんどまたはまったくないようにする必要があります。

1 次近似では、レギュレータの消費電力は、入力と出力の電圧差と負荷条件に依存します。消費電力 (PD) は、次の式で計算されます。

式 7. PD = (VIN – VOUT) × IOUT
注: システム電圧レールを適切に選択することで、消費電力を最小限に抑えることができるため、より高い効率を実現できます。消費電力を最小限にするには、適切な出力レギュレーションに必要な最小の入力電圧を使用します。

サーマル パッドを備えたデバイスの場合、デバイス パッケージの主な熱伝導経路は、サーマル パッドを通って PCB へと接続されます。サーマル パッドをデバイスの下の銅パッド領域に半田付けします。このパッド領域には、放熱性を高めるために、追加の銅プレーンに熱を伝導するメッキされたビアの配列を設ける必要があります。

最大消費電力により、デバイスの最大許容周囲温度 (TA) が決まります。次の式によると、消費電力と接合部温度は、多くの場合、いくつかの要因による関係があります。これらの要因としては、PCB とデバイス パッケージを組み合わせた接合部から周囲への熱抵抗 (RθJA)、および周囲空気の温度 (TA) があります。

式 8. TJ = TA + (RθJA × PD)

熱抵抗 (Rθ JA) は、特定の PCB 設計に作り込まれている熱拡散能力に大きく依存します。したがって、RθJA は、銅箔の総面積、銅の重量、プレーンの位置に応じて変化します。熱に関する情報 表に記載されている接合部から周囲への熱抵抗は、JEDEC 標準の PCB および銅箔面積によって決まります。この熱抵抗は、パッケージの熱性能の相対的な測定値として使用されます。PCB 基板レイアウト最適化により、熱に関する情報 表の値に比べて RθJA が 35%~55% 改善されています。詳細については、『基板レイアウトが LDO の熱性能に及ぼす影響に関する実証的分析』アプリケーション ノートを参照してください。