JAJU446A December   2017  – January 2022

 

  1.   概要
  2.   Resources
  3.   特長
  4.   アプリケーション
  5.   5
  6. System Description
    1. 1.1 Key System Specifications
  7. System Overview
    1. 2.1 Block Diagram
    2. 2.2 System-Level Description
    3. 2.3 Highlighted Products
      1. 2.3.1 Analog Signal Chain
        1. 2.3.1.1 LMH5401
        2. 2.3.1.2 LHM6401
        3. 2.3.1.3 BUF802
      2. 2.3.2 Clock
        1. 2.3.2.1 LMK61E2
        2. 2.3.2.2 LMK04828
        3. 2.3.2.3 LMX2594
      3. 2.3.3 Power
        1. 2.3.3.1 TPS82130
        2. 2.3.3.2 TPS7A84
    4. 2.4 System Design Theory
      1. 2.4.1 High-Speed, Low-Phase Noise Clock Generation
      2. 2.4.2 Channel-to-Channel Skew
      3. 2.4.3 Deterministic Latency
        1. 2.4.3.1 Importance of Deterministic Latency
      4. 2.4.4 Analog Front End
      5. 2.4.5 Multichannel System Power Requirement
      6. 2.4.6 Hardware Programming
  8. Circuit Design
    1. 3.1 Analog Input Front End
      1. 3.1.1 High-Input Impedance Buffer Implementation Using the BUF802
    2. 3.2 High-Speed Multichannel Clocking
    3. 3.3 Power Supply Section
      1. 3.3.1 DC-DC
        1. 3.3.1.1 How to Set 2.1-V Output Voltage
      2. 3.3.2 LDOs
  9. Host Interface
  10. Hardware Functional Block
  11. Getting Started Application GUI
  12. Testing and Results
    1. 7.1 Test Setup and Test Plan
    2.     44
    3. 7.2 SNR Measurement Test
    4. 7.3 Channel-to-Channel Skew Measurement Test
    5. 7.4 Performance Test Result
    6. 7.5 Multichannel Skew Measurement
    7. 7.6 49
  13. Design Files
    1. 8.1 Schematics
    2. 8.2 Bill of Materials
    3. 8.3 Altium Project
    4. 8.4 Gerber Files
    5. 8.5 Assembly Drawings
  14. Software Files
  15. 10Related Documentation
    1. 10.1 Trademarks
  16. 11About the Authors
    1. 11.1 Acknowledgment
  17. 12Revision History

LMX2594

The LMX2594 is a high-performance, wideband PLL with integrated VCOs that can generate frequency from 10 MHz to 15 GHz without using an internal doubler. The high-performance PLL with figure of merit of –236 dBc/Hz and high-phase detector frequency can attain very-low in-band noise and integrated jitter. The high-speed N-divider has no pre-divider, thus significantly reducing the amplitude and number of spurs. There is also a programmable input multiplier to mitigate integer boundary spurs. The LMX2594 adds support for generating or repeating SYSREF (compliant to JESD204B standard), which make it an ideal low-noise clock source for high-speed data converters. Fine delay adjustment (9-ps resolution) is provided in this configuration to account for delay differences of board traces. The output drivers within the LMX2594 delivers output power as high as 7 dBm at a 15-GHz carrier frequency. The device runs from a single 3.3-V supply and has integrated LDOs that eliminate the requirement for onboard, low-noise LDOs.