SLAAEF5B March   2024  – June 2025 MSPM0G1505 , MSPM0G1506 , MSPM0G1507 , MSPM0G3506 , MSPM0G3507 , MSPM0H3216 , MSPM0L1303 , MSPM0L1304 , MSPM0L1304-Q1 , MSPM0L1305 , MSPM0L1305-Q1 , MSPM0L1306 , MSPM0L1306-Q1

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Algorithm Introduction
    1. 2.1 Battery Basic Knowledge Introduction
    2. 2.2 Different SOCs and Used Technologies
      1. 2.2.1 NomAbsSoc Calculation
        1. 2.2.1.1 Coulometer With OCV Calibration
        2. 2.2.1.2 Data Fusion
        3. 2.2.1.3 Battery Model Filter
      2. 2.2.2 CusRltSoc Calculation
        1. 2.2.2.1 EmptySoc and FullSoc
        2. 2.2.2.2 Core Temperature Evaluation
      3. 2.2.3 SmoothRltSoc Calculation
    3. 2.3 Algorithm Overview
      1. 2.3.1 Voltage Gauge Introduction
      2. 2.3.2 Current Gauge Introduction
      3. 2.3.3 Capacity Learn Introduction
      4. 2.3.4 Mixing Introduction
  6. 3Gauge GUI Introduction
    1. 3.1 MCU COM Tool
    2. 3.2 SM COM Tool
    3. 3.3 Data Analysis Tool
  7. 4MSPM0 Gauge Evaluation Steps
    1. 4.1 Step 1: Hardware Preparation
    2. 4.2 Step 2: Get a Battery Model
      1. 4.2.1 Battery Test Pattern
      2. 4.2.2 Battery Model Generation
    3. 4.3 Step 3: Input Customized Configuration
    4. 4.4 Step 4: Evaluation
      1. 4.4.1 Detection Data Input Mode
      2. 4.4.2 Communication Data Input Mode
    5. 4.5 Step 5: Gauge Performance Check
      1. 4.5.1 Learning Cycles
      2. 4.5.2 SOC and SOH Accuracy Evaluation
  8. 5MSPM0 Gauge Solutions
    1. 5.1 MSPM0L1306 and 1 LiCO2 Battery
      1. 5.1.1 Hardware Setup Introduction
      2. 5.1.2 Software and Evaluation Introduction
      3. 5.1.3 Battery Test Cases
        1. 5.1.3.1 Performance Test
        2. 5.1.3.2 Current Consumption Test
    2. 5.2 MSPM0G3507, BQ76952 and 4 LiFePO4 Batteries
      1. 5.2.1 Hardware Setup Introduction
      2. 5.2.2 Software and Evaluation Introduction
      3. 5.2.3 Battery Test Cases
        1. 5.2.3.1 Performance Test 1 (Pulse Discharge)
        2. 5.2.3.2 Performance Test 2 (Load Change)
    3. 5.3 MSPM0L1306 and BQ76905
  9. 6Summary
  10. 7References
  11. 8Revision History

Gauge GUI Introduction

Gauge GUI is also an important part of this implementation as shown in Figure 3-1. This can be used to record MCU data, run battery test case, and do data conversion. This GUI has three pages.

  • First, is MCU COM Tool, used to communicate with MSPM0 and record the MCU transmitted battery running data.
  • Second, is SM COM Tool, used to communicate with the source meter, run battery test case and record the test data sent from the source meter.
  • Third, is Data Analysis Tool, used to generate battery parameters and evaluate the SOC error.

Be attentive when using GUI executing file to evaluate the implementation. The GUI takes 2-3 minutes to start due to Python's limitation. Instead, the GUI source file has a faster GUI start-up speed. If users want to customize the battery test cases under the SM COM Tool, then TI recommends to use the source code. For more details about how to use the GUI, refer to the next sections.

 Gauge GUI Functions Figure 3-1 Gauge GUI Functions