SLOA289B May   2020  – September 2021 66AK2H06 , 66AK2H12 , 66AK2H14 , ADS8588H , AMC3301 , ISO224 , ISO7740 , ISO7741 , ISO7742 , LMZ30604 , SN65LVDS047 , SN65LVDS048A , UCC12040 , UCC12050

 

  1.   Trademarks
  2. 1HVDC Power Transmission Overview and Architecture
    1. 1.1 Electrical Power - Generation, Transmission and Distribution
    2. 1.2 HVAC to HVDC Power Transmission
      1. 1.2.1 Comparison of HVDC and HVAC
      2. 1.2.2 Primary Objectives of HVDC Transmission
    3. 1.3 Working Principle of HVDC Transmission Station
    4. 1.4 Advantages of HVDC Transmission
  3. 2HVDC Transmission System (HVDC station)
    1. 2.1 HVDC Transmission Technologies
    2. 2.2 HVDC Transmission System (HVDC station) Key Components
      1. 2.2.1 Converter
      2. 2.2.2 Converter Valve Arms
        1. 2.2.2.1 Converter Phase Arms
      3. 2.2.3 Converter Transformers
      4. 2.2.4 Power Transmission Lines
      5. 2.2.5 Components for Ripple Control, Harmonic Control and Waveform Shaping
      6. 2.2.6 Protection Equipment
  4. 3HVDC transmission station - Control and Protection (C and P)
    1. 3.1 Control OF HVDC Transmission Station
      1. 3.1.1 System Control
      2. 3.1.2 Master Control
      3. 3.1.3 Station Control
      4. 3.1.4 Pole or Converter Control
      5. 3.1.5 Valve Base Control VBC (valve unit control)
    2. 3.2 HVDC Transmission Station Protection
      1. 3.2.1 Protection of AC Section of HVDC Station
      2. 3.2.2 Protection of DC Section of HVDC Station
      3. 3.2.3 Equipment Protection and Monitoring
      4. 3.2.4 Sampling and DC Fault Detection
    3. 3.3 Fault Recording and Monitoring
    4. 3.4 Control and Protection Panel
    5. 3.5 Diagnostics and Monitoring
  5. 4HVDC Transmission Control and Protection – System Level Block Diagram
  6. 5TI Solutions for HVDC Transmission Station Control and Protection
    1. 5.1 TI Products
      1. 5.1.1 Analog
      2. 5.1.2 Embedded Processing
      3. 5.1.3 Power Supply and Gate Drivers
      4. 5.1.4 High-Speed On-Board Interface and External Communication
      5. 5.1.5 Board Level Isolation and Protection
  7. 6Summary
  8. 7TI Reference Designs
  9. 8Additional References
  10. 9Revision History

HVDC Transmission Station Protection

The Converter Protection detects faults on the converter transformer secondary side, in the valve hall and failures that lead to overstress of the valves. The converter station and protection systems are designed such a way that the ac protection of the converter and adjacent ac substation are not affected by the normal, transient and dynamic behavior of the DC system.

The protection and control system of the HVDC converter station is designed to ensure that no single failure of the equipment shall cause total failure of the HVDC system. The HVDC facility is divided into a number of separately protected and overlapping zones. The protection equipment shall only act upon a specific type of fault within a designated zone and shall be stable to other types of disturbances or faults external to the relevant zone. Every protection zone is protected by two main and a backup protection function using different protection principle where ever possible. When different protection principles cannot be used, duplicated protection functions are used. The protection is independent of control as much as possible. The protection systems shall always remain active and shall be powered by separate and independent supplies.

The protection system consists of a completely redundant protection scheme incorporating the following functions: