SLVAEX9B April   2022  – August 2022 ESD122 , ESD1LIN24-Q1 , ESD204 , ESD224 , ESD2CAN24-Q1 , ESD2CANFD24 , ESD2CANXL24-Q1 , ESD321 , ESD341 , ESD351 , ESD401 , ESD451 , ESD751 , ESD751-Q1 , ESD752 , ESD761 , ESD761-Q1 , ESD762 , ESDS302 , ESDS304 , ESDS312 , ESDS314 , SN65220 , SN65240 , TPD1E01B04 , TPD1E01B04-Q1 , TPD1E04U04 , TPD1E05U06 , TPD1E05U06-Q1 , TPD1E0B04 , TPD1E10B06 , TPD1E10B09-Q1 , TPD1E1B04 , TPD1E6B06 , TPD2E001 , TPD2E001-Q1 , TPD2E007 , TPD2E009 , TPD2E1B06 , TPD2E2U06 , TPD2EUSB30 , TPD2EUSB30A , TPD2S017 , TPD3E001 , TPD3F303 , TPD4E001 , TPD4E001-Q1 , TPD4E002 , TPD4E004 , TPD4E02B04 , TPD4E02B04-Q1 , TPD4E05U06-Q1 , TPD4E101 , TPD4E110 , TPD4E1B06 , TPD4E1U06 , TPD4E6B06 , TPD4F003 , TPD4S009 , TPD4S012 , TPD5E003 , TPD6E001 , TPD6E004 , TPD6E05U06 , TPD8S009 , TSD05 , TSD05C , TSM24A-Q1 , TSM24CA-Q1 , TSM36A , TVS0500 , TVS0701 , TVS1400 , TVS1401 , TVS2200 , TVS2701 , TVS3301 , UC1611-SP , UC2610 , UC3610 , UC3611 , UC3611M

 

  1.   Abstract
  2.   Trademarks
  3. 1Definitions of ESD Device Specifications
    1. 1.1 Working Voltage (VRWM)
    2. 1.2 Capacitance
    3. 1.3 IEC 61000-4-2 Rating
    4. 1.4 Channels
    5. 1.5 Unidirectional vs. Bidirectional
  4. 2ESD Layout Tips
    1. 2.1 Optimizing Impedance for Dissipating ESD
    2. 2.2 Limiting EMI From ESD
    3. 2.3 Routing With VIAs
    4. 2.4 Optimizing Ground Schemes for ESD
  5. 3ESD Solutions by Package Types
    1. 3.1  0201 2-pin SON (TI: DPL) | 0.6 mm x 0.3 mm
    2. 3.2  0402 2-pin SON (TI: DPY) | 1.0 mm × 0.6 mm
    3. 3.3  2-pin SOD-523 (TI: DYA) | 1.2 mm x 0.8 mm
    4. 3.4  3-pin SOT-9X3 (TI: DRT) | 1 mm × 1 mm
    5. 3.5  3-pin SC70 (TI: DCK) | 2 mm × 1.25 mm
    6. 3.6  3-pin SOT23 (TI:DBZ) | 3.04 mm × 2.64 mm
    7. 3.7  4-pin SON (TI: DPW) | 0.8 mm × 0.8 mm
    8. 3.8  5-pin SOT-5X3 (TI: DRL) | 1.6 mm × 1.2 mm
    9. 3.9  5-pin SOT-23 (TI: DBV) | 2.9 mm × 1.6 mm
    10. 3.10 6-pin SON (TI: DRY) | 1.45 mm × 1 mm
    11. 3.11 6-pin SOT-5X3 (TI: DRL) | 1.6 mm × 1.2 mm
    12. 3.12 6-pin SOT-23 (TI: DBV) | 1.6 mm × 2.9 mm
    13. 3.13 6-pin SC70 (TI: DCK) | 2.15 mm × 1.4 mm
    14. 3.14 8-pin SON (TI: DQD) | 1.35 mm × 1.7 mm
    15. 3.15 10-pin SON (TI: DQA) | 1 mm × 2.5 mm
  6. 4References
  7. 5Revision History

Optimizing Impedance for Dissipating ESD

When designing a circuit to dissipate ESD, inductance is an important parasitic to consider. Based on the parasitic inductance, a change in current would cause a change in the overall voltage, destabilizing the overall board performance. Figure 2-1 shows four parasitic inductances between the ESD source and the transient voltage suppressor (TVS) or ESD diodes.

GUID-20200807-CA0I-98BJ-6WM0-VMVTRXCM2QPK-low.gif Figure 2-1 PCB Inductance Around a Single-Channel TVS

In a well-designed system, any inductance is minimized between the ESD source and the path to ground through the TVS. Use the following 5 layout tips to minimize inductance:

  1. Minimize any inductance between the ESD source and the path to ground through the TVS
  2. Place the TVS as close to the ESD source or connector as design rules allow
  3. Place the protected IC much further from the TVS than the TVS is to the connector. Following tips 2 and 3 will ensure L4>>L1, steering the IESD towards TVS. Minimizing L1 is further covered in Section 2.2 and Section 2.3.
  4. Do not use L2 stubs between the TVS and the protected line. Route directly from the ESD source to the TVS. In a well-designed system, L2 should not be present. Please avoid design practices that introduce inductance between the protected line and the TVS.
  5. Minimize L3 inductance between the TVS and ground, which is further covered in Section 2.4. This inductance is the most predominant parasitic influencing the overall VESD.