SPRACZ0A August   2021  – March 2023 TMS320F2800132 , TMS320F2800132 , TMS320F2800133 , TMS320F2800133 , TMS320F2800135 , TMS320F2800135 , TMS320F2800137 , TMS320F2800137 , TMS320F2800152-Q1 , TMS320F2800152-Q1 , TMS320F2800153-Q1 , TMS320F2800153-Q1 , TMS320F2800154-Q1 , TMS320F2800154-Q1 , TMS320F2800155 , TMS320F2800155 , TMS320F2800155-Q1 , TMS320F2800155-Q1 , TMS320F2800156-Q1 , TMS320F2800156-Q1 , TMS320F2800157 , TMS320F2800157 , TMS320F2800157-Q1 , TMS320F2800157-Q1 , TMS320F280021 , TMS320F280021 , TMS320F280021-Q1 , TMS320F280021-Q1 , TMS320F280023 , TMS320F280023 , TMS320F280023-Q1 , TMS320F280023-Q1 , TMS320F280023C , TMS320F280023C , TMS320F280025 , TMS320F280025 , TMS320F280025-Q1 , TMS320F280025-Q1 , TMS320F280025C , TMS320F280025C , TMS320F280025C-Q1 , TMS320F280025C-Q1 , TMS320F280033 , TMS320F280033 , TMS320F280034 , TMS320F280034 , TMS320F280034-Q1 , TMS320F280034-Q1 , TMS320F280036-Q1 , TMS320F280036-Q1 , TMS320F280036C-Q1 , TMS320F280036C-Q1 , TMS320F280037 , TMS320F280037 , TMS320F280037-Q1 , TMS320F280037-Q1 , TMS320F280037C , TMS320F280037C , TMS320F280037C-Q1 , TMS320F280037C-Q1 , TMS320F280038-Q1 , TMS320F280038-Q1 , TMS320F280038C-Q1 , TMS320F280038C-Q1 , TMS320F280039 , TMS320F280039 , TMS320F280039-Q1 , TMS320F280039-Q1 , TMS320F280039C , TMS320F280039C , TMS320F280039C-Q1 , TMS320F280039C-Q1 , TMS320F280040-Q1 , TMS320F280040-Q1 , TMS320F280040C-Q1 , TMS320F280040C-Q1 , TMS320F280041 , TMS320F280041 , TMS320F280041-Q1 , TMS320F280041-Q1 , TMS320F280041C , TMS320F280041C , TMS320F280041C-Q1 , TMS320F280041C-Q1 , TMS320F280045 , TMS320F280045 , TMS320F280048-Q1 , TMS320F280048-Q1 , TMS320F280048C-Q1 , TMS320F280048C-Q1 , TMS320F280049 , TMS320F280049 , TMS320F280049-Q1 , TMS320F280049-Q1 , TMS320F280049C , TMS320F280049C , TMS320F280049C-Q1 , TMS320F280049C-Q1 , TMS320F28075 , TMS320F28075 , TMS320F28075-Q1 , TMS320F28075-Q1 , TMS320F28076 , TMS320F28076 , TMS320F28374D , TMS320F28374D , TMS320F28374S , TMS320F28374S , TMS320F28375D , TMS320F28375D , TMS320F28375S , TMS320F28375S , TMS320F28375S-Q1 , TMS320F28375S-Q1 , TMS320F28376D , TMS320F28376D , TMS320F28376S , TMS320F28376S , TMS320F28377D , TMS320F28377D , TMS320F28377D-EP , TMS320F28377D-EP , TMS320F28377D-Q1 , TMS320F28377D-Q1 , TMS320F28377S , TMS320F28377S , TMS320F28377S-Q1 , TMS320F28377S-Q1 , TMS320F28378D , TMS320F28378D , TMS320F28378S , TMS320F28378S , TMS320F28379D , TMS320F28379D , TMS320F28379D-Q1 , TMS320F28379D-Q1 , TMS320F28379S , TMS320F28379S , TMS320F28384D , TMS320F28384D , TMS320F28384D-Q1 , TMS320F28384D-Q1 , TMS320F28384S , TMS320F28384S , TMS320F28384S-Q1 , TMS320F28384S-Q1 , TMS320F28386D , TMS320F28386D , TMS320F28386D-Q1 , TMS320F28386D-Q1 , TMS320F28386S , TMS320F28386S , TMS320F28386S-Q1 , TMS320F28386S-Q1 , TMS320F28388D , TMS320F28388D , TMS320F28388S , TMS320F28388S , TMS320F28P550SJ , TMS320F28P550SJ , TMS320F28P559SJ-Q1 , TMS320F28P559SJ-Q1 , TMS320F28P650DH , TMS320F28P650DH , TMS320F28P650DK , TMS320F28P650DK , TMS320F28P650SH , TMS320F28P650SH , TMS320F28P650SK , TMS320F28P650SK , TMS320F28P659DK-Q1 , TMS320F28P659DK-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 Resources
      1. 1.1.1 TINA-TI SPICE-Based Analog Simulation Program
      2. 1.1.2 PSPICE for TI Design and Simulation Tool
      3. 1.1.3 Application Report: ADC Input Circuit Evaluation for C2000 MCUs
      4. 1.1.4 TI Precision Labs - SAR ADC Input Driver Design Series
      5. 1.1.5 Analog Engineer's Calculator
      6. 1.1.6 TI Precision Labs - Op Amps: Stability Series
      7. 1.1.7 Related Application Reports
      8. 1.1.8 Comparison of Schematic Capture and Simulation Tools
      9. 1.1.9 PSpice for TI ADC Input Models
  4. 2Charge-Sharing Concept
    1. 2.1 Traditional High-Speed ADC Driving Circuits
    2. 2.2 Increased Cs in High-Speed ADC Driving Circuits
    3. 2.3 Very Large Cs in ADC Driving Circuits
    4. 2.4 Charge-Sharing Operation
    5. 2.5 Sample Rate and Source Impedance vs. Tracking Error
    6. 2.6 Analytical Solution to Tracking Error
    7. 2.7 Charge-Sharing in Multiplexed ADCs
    8. 2.8 Charge-Sharing Circuit Advantages
    9. 2.9 Charge-Sharing Circuit Disadvantages
  5. 3Charge Sharing Design Flow
    1. 3.1 Gather Required Information
    2. 3.2 Size Cs
    3. 3.3 Verify Sample Rate, Source Impedance, and Bandwidth
    4. 3.4 Simulate Circuit Settling Performance
    5. 3.5 Input Design Worksheet
  6. 4Charge-Sharing Circuit Simulation Methods
    1. 4.1 Simulation Components
      1. 4.1.1 Vin
      2. 4.1.2 Voa , Voa_SS, and Verror
      3. 4.1.3 Rs, Cs, and Vcont
      4. 4.1.4 Ch, Ron, and Cp
      5. 4.1.5 S+H Switch, Discharge Switch, tacq, and tdis
    2. 4.2 Configure the Simulation Parameters
    3. 4.3 Bias Point Analysis to Determine Voa_ss
    4. 4.4 Transient Analysis to Determine Voa_ss
    5. 4.5 Measure the Settling Error
    6. 4.6 Sweeping Source Resistance
  7. 5Example Circuit Designs
    1. 5.1 Example 1: Determining Maximum Sample Rate
      1. 5.1.1 Example 1: Analysis
      2. 5.1.2 Example 1: Simulation
      3. 5.1.3 Example 1: Worksheet
    2. 5.2 Example 2: Adding an Op-amp
      1. 5.2.1 Example 2: Analysis
      2. 5.2.2 Example 2: Simulation
      3. 5.2.3 Example 2: Worksheet
    3. 5.3 Example 3: Reduced Settling Target
      1. 5.3.1 Example 3: Analysis
      2. 5.3.2 Example 3: Simulation
      3. 5.3.3 Example 3: Worksheet
    4. 5.4 Example 4: Voltage Divider
      1. 5.4.1 Example 4: Analysis
      2. 5.4.2 Example 4: Simulation
      3. 5.4.3 Example 4: Worksheet
  8. 6Summary
  9.   A Appendix: ADC Input Settling Motivation
    1.     A.1 Mechanism of ADC Input Settling
    2.     A.2 Symptoms of Inadequate Settling
      1.      A.2.1 Distortion
      2.      A.2.2 Memory Cross-Talk
      3.      A.2.3 Accuracy
      4.      A.2.4 C2000 ADC Architecture
  10.   References
  11.   Revision History

Charge-Sharing Circuit Disadvantages

Charge-sharing ADC input designs are not appropriate for all signal conditioning requirements. Care should be taken to select a high-speed op-amp based design when it is more appropriate, including:

  • High Speed Sampling

    When sampling at high speed on a single channel, the tracking error in a charge-sharing design will become prohibitively large. In this case, a high-speed op-amp based ADC driver will be needed.

  • Compatibility With Oversampling Methods

    Sampling the same signal multiple times back-to-back and then averaging the results can be a good method to reduce system noise or sampling noise. However, in the case of a charge-sharing ADC driver, these multiple samples will increase the effective sample rate on the channel, increasing the tracking error. In the case the extra samples are back-to-back, the channel sample rate becomes as fast as the ADC sample rate, which will likely create excessive tracking error.

  • High Bandwidth Signals

    The large capacitor needed to meet the charge-sharing criterion will inherently provide some amount of low-pass filtering. For undersampling applications or other applications that require sampling of a high bandwidth signal, charge sharing may not be feasible.

  • Extremely Low Distortion

    C0G and NP0 type capacitors provide very low capacitance vs. voltage nonlinearity. If the ADC signal chain uses these capacitors it is possible to achieve excellent distortion performance. These capacitors are less dense than higher distortion alternatives (for example X7R type). This can make component selection for the very large capacitances needed for charge-sharing designs infeasible, particularly at high resolution (for example 16-bit resolution). For more information, see Selecting capacitors to minimize distortion in audio applications.