DLPS269A March   2025  – June 2025 DLP991UUV

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Storage Conditions
    3. 5.3  ESD Ratings
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Thermal Information
    6. 5.6  Electrical Characteristics
    7. 5.7  Switching Characteristics
    8. 5.8  Timing Requirements
    9. 5.9  System Mounting Interface Loads
    10. 5.10 Micromirror Array Physical Characteristics
    11. 5.11 Micromirror Array Optical Characteristics
    12. 5.12 Window Characteristics
    13. 5.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Interface
      2. 6.3.2 Timing
    4. 6.4 Device Functional Modes
    5. 6.5 Optical Interface and System Image Quality Considerations
      1. 6.5.1 Numerical Aperture and Stray Light Control
      2. 6.5.2 Pupil Match
      3. 6.5.3 Illumination Overfill
    6. 6.6 DMD Temperature Calculation
      1. 6.6.1 Off-State Thermal Differential (TDELTA_MIN)
      2. 6.6.2 On-State Thermal Differential (TDELTA_MAX)
    7. 6.7 Micromirror Power Density Calculation
    8. 6.8 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 6.8.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 6.8.2 Landed Duty Cycle and Useful Life of the DMD
      3. 6.8.3 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
    3. 7.3 DMD Die Temperature Sensing
  9. Power Supply Recommendations
    1. 8.1 DMD Power Supply Power-Up Procedure
    2. 8.2 DMD Power Supply Power-Down Procedure
  10. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 PCB Design Standards
      2. 9.1.2 General PCB Routing
        1. 9.1.2.1 Trace Impedance and Routing Priority
        2. 9.1.2.2 Example PCB Layer Stack-Up
        3. 9.1.2.3 Trace Width, Spacing
        4. 9.1.2.4 Power and Ground Planes
        5. 9.1.2.5 Trace Length Matching
          1. 9.1.2.5.1 HSSI Input Bus Skew
          2. 9.1.2.5.2 Other Timing Critical Signals
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Device Nomenclature
      2. 10.1.2 Device Markings
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum

Application Information

Texas Instruments DLP technology is a micro-electro-mechanical systems (MEMS) technology that modulates light using a digital micromirror device (DMD). DMDs vary in resolution and size and can contain over 8.9 million micromirrors. Each micromirror of a DMD is independently controlled and can be synchronized with illuminators and cameras to enable a wide range of applications. DLP technology enables a wide variety of Industrial products worldwide, from digital imaging engines embedded in large lithography machines to high-resolution 3D Printing machines.

The most recent class of chipsets from Texas Instruments is based on a breakthrough micromirror technology, called SST. With a smaller pixel pitch of 5.4μm and tilt angle of 12 degrees, SST chipsets enable higher resolution in a smaller form factor and enhanced image processing features while maintaining high optical efficiency. DLP chipsets are a great fit for any system that values high-resolution projection at high modulation speeds.