SLAA957 September   2020 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253 , MSP430F2003 , MSP430F2013 , MSP430F2013-EP , MSP430F423A , MSP430F4250 , MSP430F425A , MSP430F4260 , MSP430F4270 , MSP430F427A , MSP430F47126 , MSP430F47127 , MSP430F47163 , MSP430F47166 , MSP430F47167 , MSP430F47173 , MSP430F47176 , MSP430F47177 , MSP430F47183 , MSP430F47186 , MSP430F47187 , MSP430F47193 , MSP430F47196 , MSP430F47197 , MSP430F477 , MSP430F478 , MSP430F4783 , MSP430F4784 , MSP430F479 , MSP430F4793 , MSP430F4794 , MSP430F6720 , MSP430F6720A , MSP430F6721 , MSP430F6721A , MSP430F6723 , MSP430F6723A , MSP430F6724 , MSP430F6724A , MSP430F6725 , MSP430F6725A , MSP430F6726 , MSP430F6726A , MSP430F6730 , MSP430F6730A , MSP430F6731 , MSP430F6731A , MSP430F6733 , MSP430F6733A , MSP430F6734 , MSP430F6734A , MSP430F6735 , MSP430F6735A , MSP430F6736 , MSP430F6736A , MSP430F6745 , MSP430F67451 , MSP430F67451A , MSP430F6745A , MSP430F6746 , MSP430F67461 , MSP430F67461A , MSP430F6746A , MSP430F6747 , MSP430F67471 , MSP430F67471A , MSP430F6747A , MSP430F6748 , MSP430F67481 , MSP430F67481A , MSP430F6748A , MSP430F6749 , MSP430F67491 , MSP430F67491A , MSP430F6749A , MSP430F67621 , MSP430F67621A , MSP430F67641 , MSP430F67641A , MSP430F6765 , MSP430F67651 , MSP430F67651A , MSP430F6765A , MSP430F6766 , MSP430F67661 , MSP430F67661A , MSP430F6766A , MSP430F6767 , MSP430F67671 , MSP430F67671A , MSP430F6767A , MSP430F6768 , MSP430F67681 , MSP430F67681A , MSP430F6768A , MSP430F6769 , MSP430F67691 , MSP430F67691A , MSP430F6769A , MSP430F6775 , MSP430F67751 , MSP430F67751A , MSP430F6775A , MSP430F6776 , MSP430F67761 , MSP430F67761A , MSP430F6776A , MSP430F6777 , MSP430F67771 , MSP430F67771A , MSP430F6777A , MSP430F6778 , MSP430F67781 , MSP430F67781A , MSP430F6778A , MSP430F6779 , MSP430F67791 , MSP430F67791A , MSP430F6779A , MSP430FE423 , MSP430FE4232 , MSP430FE423A , MSP430FE4242 , MSP430FE425 , MSP430FE4252 , MSP430FE425A , MSP430FE427 , MSP430FE4272 , MSP430FE427A , MSP430FG4250 , MSP430FG4260 , MSP430FG4270 , MSP430FG477 , MSP430FG478 , MSP430FG479 , MSP430FG6425 , MSP430FG6426 , MSP430FG6625 , MSP430FG6626 , MSP430FR5041 , MSP430FR5043 , MSP430FR50431 , MSP430FR6005 , MSP430FR6007 , MSP430FR6041 , MSP430FR6043 , MSP430FR60431 , MSP430FR6045 , MSP430FR6047 , MSP430FR60471 , MSP430I2020 , MSP430I2021 , MSP430I2030 , MSP430I2031 , MSP430I2040 , MSP430I2041

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction: MSP Sigma-Delta ADCs and Common Applications
  4. 2MSP Sigma-Delta ADC Portfolio
  5. 3Sigma-Delta ADC Overview
  6. 4MSP Sigma-Delta ADC Features
    1. 4.1  ADC Inputs: Differential or Single-Ended
    2. 4.2  Input Channels: Independent or Multiplexed
    3. 4.3  Integrated Buffers
    4. 4.4  Integrated PGAs
    5. 4.5  Offset Calibration: Internal or External
    6. 4.6  Voltage Reference: Internal or External
    7. 4.7  ADC Modulator Clock Frequency: Fixed or Adjustable
    8. 4.8  Sampling Rate versus Data Rate
    9. 4.9  Conversion Mode: Single or Continuous
    10. 4.10 Groups of ADC Channels
    11. 4.11 Preload
    12. 4.12 Output Format: Unipolar or Bipolar Data
    13. 4.13 Module Synchronization
    14. 4.14 Architecture: Discrete-Time versus Continuous-Time
  7. 5Solutions to Common MSP Sigma-Delta ADC Configuration Issues
    1. 5.1 ADC Input Configuration
      1. 5.1.1 Settling Time Exceeds Recommended Minimum
      2. 5.1.2 Amplitude of the Input Signal Exceeds FSR
      3. 5.1.3 Missing Anti-Aliasing Filters
    2. 5.2 ADC Clocking Configuration
      1. 5.2.1 Incorrect Sampling Frequency
    3. 5.3 ADC Results
      1. 5.3.1 Unexpected Output Data Format
      2. 5.3.2 Low Resolution
      3. 5.3.3 Data Interpretation
    4. 5.4 Reference Module (REF) Configuration
      1. 5.4.1 Choosing Between an Internal or External Reference
      2. 5.4.2 Connecting the Recommended Capacitors
      3. 5.4.3 Delaying Conversions Until the Reference Settles
    5. 5.5 Hardware Recommendations
  8. 6Frequently Asked Questions
  9. 7References

Amplitude of the Input Signal Exceeds FSR

The FSR is the maximum recommended amplitude of the input signal. It depends on the specified PGA gain and reference voltage settings and varies across the different SD ADC modules. Exceeding FSR can drastically increase noise in the digital output because the PGAs become saturated. When using the internal voltage reference, the FSR values are provided in the device-specific data sheet for various PGA gain settings. If you're using an external voltage reference instead, the device-specific data sheet also includes an equation to recalculate the FSR values.

Ideally, the maximum amplitude of the input signal should be slightly less than FSR for the minimum PGA gain allowed by your application. There are two reasons for this approach: 1) the signal-to-noise plus distortion (SINAD) performance increases as the amplitude of the input signal approaches FSR, and 2) the SINAD performance decreases as the PGA gain increases. However, some applications may require sensors that output low-amplitude signals which would require a high PGA gain. For example, in some metering applications, low-resistance shunts measure current but output low-amplitude signals, so a high PGA gain would be required.

For root-mean-square (RMS) inputs, make sure you convert from RMS to peak amplitudes before comparing them to the peak values in the device-specific data sheet. Equation 3 shows how to convert sinusoidal RMS amplitudes to peak, but other waveforms may use a different formula.

Equation 3. GUID-20200928-CA0I-PQQP-9XDL-JGXZLPVVGG69-low.gif