16-MHz MCU with 256-KB FRAM, LCD, 12-bit high speed 8-MSPS sigma-delta ADC and integrated sensor AFE

MSP430FR6007

ACTIVE

Product details

Non-volatile memory (kB) 256 RAM (KB) 8 ADC 12-bit SAR GPIO pins (#) 81 Features Advanced sensing, DMA, LCD, Low-energy accelerator (LEA), Metering test interface (MTIF), Real-time clock UART 4 USB No Number of I2Cs 2 SPI 4 Comparator channels (#) 16
Non-volatile memory (kB) 256 RAM (KB) 8 ADC 12-bit SAR GPIO pins (#) 81 Features Advanced sensing, DMA, LCD, Low-energy accelerator (LEA), Metering test interface (MTIF), Real-time clock UART 4 USB No Number of I2Cs 2 SPI 4 Comparator channels (#) 16
LQFP (PZ) 100 256 mm² 16 x 16
  • Best-in-class ultrasonic water-flow measurement with ultra-low power consumption
    • <100-ps differential time-of-flight (dTOF) accuracy
    • High-precision time measurement resolution of 20 ps
    • Ability to detect low flow rates (4-6 liters per hour)
    • Approximately 4-µA current consumption with one measurement per second
  • Compliant to and exceeds ISO 4064, OIML R49, and EN 1434 accuracy standards
  • Ability to directly interface standard ultrasonic sensors (up to 2.5 MHz)
  • Integrated analog front end – ultrasonic sensing solution (USS)
    • Programmable pulse generation (PPG) to generate pulses at different frequencies
    • Integrated physical interface (PHY) with low-impedance (4-Ω) output driver to control input and output channels
    • High-performance high-speed 12-bit sigma-delta ADC (SDHS) with output data rates up to 8 Msps
    • Programmable gain amplifier (PGA) with –6.5 dB to 30.8 dB
    • High-performance phase-locked loop (PLL) with output range of 68 MHz to 80 MHz
  • Low-energy accelerator (LEA)
    • Operation independent of CPU
    • 4KB of RAM shared with CPU
    • Efficient 256-point complex FFT: Up to 40× faster than Arm Cortex-M0+ core
  • Embedded microcontroller
    • 16-bit RISC architecture up to 16‑MHz clock
    • Wide supply voltage range from 3.6 V down to 1.8 V (minimum supply voltage is restricted by SVS levels, see the SVS specifications)
  • Optimized ultra-low-power modes
    • Active mode: approximately 120 µA/MHz
    • Standby mode with real-time clock (RTC) (LPM3.5): 450 nA (1)
    • Shutdown (LPM4.5): 30 nA
  • Ferroelectric random access memory (FRAM)
    • Up to 256KB of nonvolatile memory
    • Ultra-low-power writes
    • Fast write at 125 ns per word (64KB in 4 ms)
    • Unified memory = program + data + storage in one space
    • 1015 write cycle endurance
    • Radiation resistant and nonmagnetic
  • Intelligent digital peripherals
    • 32-bit hardware multiplier (MPY)
    • 6-channel internal DMA
    • RTC with calendar and alarm functions
    • Six 16-bit timers with up to seven capture/compare registers each
    • 32-bit and 16-bit cyclic redundancy check (CRC)
  • High-performance analog
    • 16-channel analog comparator
    • 12-bit SAR ADC featuring window comparator, internal reference, and sample-and-hold, up to 16 external input channels
    • Integrated LCD driver with contrast control for up to 264 segments
  • Multifunction input/output ports
    • Accessible bit-, byte-, and word-wise (in pairs)
    • Edge-selectable wake from LPM on all ports
    • Programmable pullup and pulldown on all ports
  • Code security and encryption
    • 128- or 256-bit AES security encryption and decryption coprocessor
    • Random number seed for random number generation algorithms
    • IP encapsulation protects memory from external access
    • FRAM provides inherent security advantages
  • Enhanced serial communication
    • Up to four eUSCI_A serial communication ports
      • UART with automatic baud-rate detection
      • IrDA encode and decode
    • Up to two eUSCI_B serial communication ports
      • I2C with multiple-slave addressing
    • Hardware UART or I2C bootloader (BSL)
  • Flexible clock system
    • Fixed-frequency DCO with 10 selectable factory-trimmed frequencies
    • Low-power low-frequency internal clock source (VLO)
    • 32-kHz crystals (LFXT)
    • High-frequency crystals (HFXT)
  • Development tools and software (also see Tools and Software)
  • Device Comparison summarizes the available device variants and package options

(1)The RTC is clocked by a 3.7-pF crystal.

  • Best-in-class ultrasonic water-flow measurement with ultra-low power consumption
    • <100-ps differential time-of-flight (dTOF) accuracy
    • High-precision time measurement resolution of 20 ps
    • Ability to detect low flow rates (4-6 liters per hour)
    • Approximately 4-µA current consumption with one measurement per second
  • Compliant to and exceeds ISO 4064, OIML R49, and EN 1434 accuracy standards
  • Ability to directly interface standard ultrasonic sensors (up to 2.5 MHz)
  • Integrated analog front end – ultrasonic sensing solution (USS)
    • Programmable pulse generation (PPG) to generate pulses at different frequencies
    • Integrated physical interface (PHY) with low-impedance (4-Ω) output driver to control input and output channels
    • High-performance high-speed 12-bit sigma-delta ADC (SDHS) with output data rates up to 8 Msps
    • Programmable gain amplifier (PGA) with –6.5 dB to 30.8 dB
    • High-performance phase-locked loop (PLL) with output range of 68 MHz to 80 MHz
  • Low-energy accelerator (LEA)
    • Operation independent of CPU
    • 4KB of RAM shared with CPU
    • Efficient 256-point complex FFT: Up to 40× faster than Arm Cortex-M0+ core
  • Embedded microcontroller
    • 16-bit RISC architecture up to 16‑MHz clock
    • Wide supply voltage range from 3.6 V down to 1.8 V (minimum supply voltage is restricted by SVS levels, see the SVS specifications)
  • Optimized ultra-low-power modes
    • Active mode: approximately 120 µA/MHz
    • Standby mode with real-time clock (RTC) (LPM3.5): 450 nA (1)
    • Shutdown (LPM4.5): 30 nA
  • Ferroelectric random access memory (FRAM)
    • Up to 256KB of nonvolatile memory
    • Ultra-low-power writes
    • Fast write at 125 ns per word (64KB in 4 ms)
    • Unified memory = program + data + storage in one space
    • 1015 write cycle endurance
    • Radiation resistant and nonmagnetic
  • Intelligent digital peripherals
    • 32-bit hardware multiplier (MPY)
    • 6-channel internal DMA
    • RTC with calendar and alarm functions
    • Six 16-bit timers with up to seven capture/compare registers each
    • 32-bit and 16-bit cyclic redundancy check (CRC)
  • High-performance analog
    • 16-channel analog comparator
    • 12-bit SAR ADC featuring window comparator, internal reference, and sample-and-hold, up to 16 external input channels
    • Integrated LCD driver with contrast control for up to 264 segments
  • Multifunction input/output ports
    • Accessible bit-, byte-, and word-wise (in pairs)
    • Edge-selectable wake from LPM on all ports
    • Programmable pullup and pulldown on all ports
  • Code security and encryption
    • 128- or 256-bit AES security encryption and decryption coprocessor
    • Random number seed for random number generation algorithms
    • IP encapsulation protects memory from external access
    • FRAM provides inherent security advantages
  • Enhanced serial communication
    • Up to four eUSCI_A serial communication ports
      • UART with automatic baud-rate detection
      • IrDA encode and decode
    • Up to two eUSCI_B serial communication ports
      • I2C with multiple-slave addressing
    • Hardware UART or I2C bootloader (BSL)
  • Flexible clock system
    • Fixed-frequency DCO with 10 selectable factory-trimmed frequencies
    • Low-power low-frequency internal clock source (VLO)
    • 32-kHz crystals (LFXT)
    • High-frequency crystals (HFXT)
  • Development tools and software (also see Tools and Software)
  • Device Comparison summarizes the available device variants and package options

(1)The RTC is clocked by a 3.7-pF crystal.

The Texas Instruments MSP430FR600x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR600x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR600x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.

The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.

Additionally, MSP430FR600x MCUs integrate other peripherals to improve system integration for metering. The MSP430FR600x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.

MSP430FR600x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP‑TS430PZ100E 100-pin target development board and EVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, and MSP430Ware™ software.

TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.

For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide .

The Texas Instruments MSP430FR600x family of ultrasonic sensing and measurement SoCs are powerful, highly integrated microcontrollers (MCUs) that are optimized for water and heat meters. The MSP430FR600x MCUs offer an integrated ultrasonic sensing solution (USS) module, which provides high accuracy for a wide range of flow rates. The USS module helps achieve ultra-low-power metering combined with lower system cost due to maximum integration requiring very few external components. MSP430FR600x MCUs implement a high-speed ADC-based signal acquisition followed by optimized digital signal processing using the integrated low-energy accelerator (LEA) module to deliver a high-accuracy metering solution with ultra-low power optimum for battery-powered metering applications.

The USS module includes a programmable pulse generator (PPG) and a physical interface (PHY) with a low-impedance output driver for optimum sensor excitation to deliver best results for zero-flow drift (ZFD). The module also includes a programmable gain amplifier (PGA) and a high-speed 12-bit 8-Msps sigma-delta ADC (SDHS) for accurate signal acquisition from industry-standard ultrasonic transducers.

Additionally, MSP430FR600x MCUs integrate other peripherals to improve system integration for metering. The MSP430FR600x MCUs also have an on-chip 8-mux LCD driver, an RTC, a 12-bit SAR ADC, an analog comparator, an advanced encryption accelerator (AES256), and a cyclic redundancy check (CRC) module.

MSP430FR600x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP‑TS430PZ100E 100-pin target development board and EVM430‑FR6047 ultrasonic water flow meter EVM. TI also provides free software including the ultrasonic sensing design center, ultrasonic sensing software library, and MSP430Ware™ software.

TI’s MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, letting system designers increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatility of flash.

For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User’s Guide .

Download

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 20
Type Title Date
* Data sheet MSP430FR600x Ultrasonic Sensing MSP430™ Microcontrollers for Water‑Metering Applications datasheet (Rev. A) 01 Dec 2020
* Errata MSP430FR6007 Microcontroller Errata (Rev. B) 20 Feb 2020
* User guide MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide (Rev. P) 21 Apr 2020
Application note MSP430 System-Level ESD Considerations (Rev. B) 14 Jul 2021
User guide MSP430 MCUs Development Guide Book (Rev. A) 13 May 2021
Technical article A world of possibilities: 5 ways to use MSP430™︎ MCUs in your design 29 Apr 2021
User guide Low-Energy Accelerator (LEA) Common Parameter Blocks Reference Guide 17 Mar 2021
User guide Low-Energy Accelerator (LEA) Registers Reference Guide 17 Mar 2021
User guide Low-Energy Accelerator (LEA) Commands Reference Guide 11 Mar 2021
Application note Ultrasonic Applications With MSP430 MCUs 20 Nov 2020
Application note Gas Meter Design Guide 28 Oct 2020
Application note Oxygen Concentration Sensing 14 Oct 2020
Application note Liquid Concentration Sensing 09 Oct 2020
Application note USS Water Flow Rate Calibration 09 Oct 2020
Application note High-Resolution Anemometers 02 Oct 2020
Application note Ultrasonic Surface Sensing 25 Sep 2020
Application note Ultrasonic Leak Detection 23 Sep 2020
Application note High Resolution Ultrasonic Liquid Level Sensing (Rev. A) 01 Sep 2020
Application note Answers to Common Sigma-Delta ADC Questions on MSP MCUs 11 Aug 2020
Application note MSP430 System ESD Troubleshooting Guide 13 Dec 2019

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

EVM430-FR6047 — MSP430FR6047 ultrasonic sensing evaluation module

The EVM430-FR6047 evaluation kit is a development platform to evaluate the performance of the MSP430FR6047 MCUs for ultrasonic sensing applications (e.g. smart water meters). The MSP430FR6047 MCU is an ultra-low-power device with an integrated ultrasonic sensing analog front end (USS) for high (...)

In stock
Limit: 5
Development kit

MSP-TS430PZ100E — Target Development Board for MSP430FR604x MCUs - 100-pin (microcontroller not included)

The MSP-TS430PZ100E microcontroller development board is a standalone ZIF socket target board used to program and debug the MSP430 in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. This development board supports all MSP430FR604x FRAM devices in an 80-pin QFP package (...)

In stock
Limit: 10
Development kit

AUWE-3P-FLOWSENSORPIPE — Ultrasonic flow sensor with pipe for development with EVM430-FR6047 & EVM430-FR6043

The Audiowell ultrasonic flow sensors are designed to work with with brass or poylmer plastic pipes of sizes DN15, DN20 & DN25 to aid in the development process when working with evaluation modules for our MSP430FR600x Ultrasonic Sensing MSP430™ Microcontrollers, specifically the (...)

From: Audiowell Electronics (Guangdong) Co., Ltd.
Hardware programming tool

MSP-FET — MSP MCU Programmer and Debugger

The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to quickly begin development on MSP low-power microcontrollers (MCU).

It supports programming and real-time debugging over both JTAG and SBW interfaces. Furthermore, the MSP-FET also provides a (...)

In stock
Limit: 999999999
Software programming tool

UNIFLASH — UniFlash stand-alone flash tool for microcontrollers, Sitara™; processors and SimpleLink™

Supported devices: CC13xx, CC25xx, CC26xx, CC3x20, CC3x30, CC3x35, Tiva, C2000, MSP43x, Hercules, PGA9xx, IWR12xx, IWR14xx, IWR16xx, IWR18xx , IWR68xx, AWR12xx, AWR14xx, AWR16xx, AWR18xx.  Command line only: AM335x, AM437x, AM571x, AM572x, AM574x, AM65XX, K2G

CCS Uniflash is a standalone tool used to (...)

Design tool

MSP-3P-SEARCH — MSP Third party search tool

TI has partnered with multiple companies to offer a wide range of solutions and services for TI MSP devices. These companies can accelerate your path to production using MSP devices. Download this search tool to quickly browse third-party details and find the right third-party to meet your needs.

The (...)

Package Pins Download
LQFP (PZ) 100 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos