SLAAE48 May   2025 TAS5825M

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Smart Amp Fundamentals
    1. 2.1 Speaker Basics and Models
    2. 2.2 Smart Amp Algorithm
  6. 3Preparation Work
    1. 3.1 Hardware Preparation
    2. 3.2 Software Preparation
    3. 3.3 Speaker Information
  7. 4Speaker Characterization
    1. 4.1 Characterization Set-up
    2. 4.2 Characterization Process
    3. 4.3 Speaker Characterization Guide
      1. 4.3.1 Hardware Connection
      2. 4.3.2 Power Up
      3. 4.3.3 Software Configuration
      4. 4.3.4 Speaker Characterization
        1. 4.3.4.1 Preparation
        2. 4.3.4.2 Speaker Type Selection
        3. 4.3.4.3 IV Measurement
        4. 4.3.4.4 Determine BL
        5. 4.3.4.5 Thermal Measurement
        6. 4.3.4.6 SPL Measurement
        7. 4.3.4.7 Safe Operating Area
        8. 4.3.4.8 Speaker Model Export
  8. 5Smart Amp Tuning and Verification
    1. 5.1 Smart Amp Tuning Guide
      1. 5.1.1  System Check
      2. 5.1.2  Choose Processing Flow
      3. 5.1.3  Import Speaker Model
      4. 5.1.4  Analog Gain Setting
      5. 5.1.5  Adjust System Gain
      6. 5.1.6  Equalizer Setting
      7. 5.1.7  Smart Bass Tuning
      8. 5.1.8  Bass Compensation
        1. 5.1.8.1 Corner Frequency
        2. 5.1.8.2 Alignment Order and Type
      9. 5.1.9  Max Level Tuning
        1. 5.1.9.1 Xmax
        2. 5.1.9.2 LAE Frequency
        3. 5.1.9.3 Power Limit
        4. 5.1.9.4 Attack, Decay, Energy
      10. 5.1.10 Anti Clipper
    2. 5.2 Smart Amp Verification
      1. 5.2.1 SPL Response Verification
      2. 5.2.2 Thermal Protection Verification
  9. 6Summary
  10. 7References

Abstract

Smart amp technology significantly enhances sound quality, maximizes peak power output, and improves system reliability through intelligent predictive algorithms. This paper provides a concise introduction and detailed implementation guideline for smart amp applications with TAS5825M such as notebooks, smart speakers, and TVs.

Smart amp fundamentals including the basic principles and modeling of typical speakers as well as the smart amp algorithms are discussed firstly. Then, this paper illustrates the necessary preparation work for implementation of the smart amp. Finally, detailed guidelines are included in this paper for both the speaker characterization and the smart amp tuning and verification, helping to facilitate the rapid implementation of smart amp with TAS5825M.