SLLSFS2 September   2025 TCAN6062-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configurations and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 ESD Ratings, IEC Transients
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Thermal Characteristics
    6. 5.6 Supply Characteristics
    7. 5.7 Dissipation Ratings
    8. 5.8 Electrical Characteristics
    9. 5.9 Switching Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Signal Improvement Capability
      2. 7.1.2 CAN XL and FAST Mode
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Pin Description
        1. 7.3.1.1 TXD
        2. 7.3.1.2 GND
        3. 7.3.1.3 VCC
        4. 7.3.1.4 RXD
        5. 7.3.1.5 VIO (only for TCAN6062V-Q1)
        6. 7.3.1.6 CANH and CANL
        7. 7.3.1.7 STB (Standby)
      2. 7.3.2  CAN Bus States
      3. 7.3.3  Pulse-Width Modulation (PWM) for FAST Mode Signaling
        1. 7.3.3.1 PWM Detection and Timing
        2. 7.3.3.2 Transition from SIC Mode to FAST RX Mode
        3. 7.3.3.3 Transition from SIC Mode to FAST TX Mode
        4. 7.3.3.4 PWM Decoding
          1. 7.3.3.4.1 PWM Detection Resolution tDECODE
          2. 7.3.3.4.2 PWM Decoding in FAST RX Mode
          3. 7.3.3.4.3 PWM Decoding in FAST TX Mode
        5. 7.3.3.5 Transition from FAST RX/TX Modes to SIC Mode
      4. 7.3.4  Out-of-Bounds (OOB) Comparator
      5. 7.3.5  TXD Dominant Timeout (DTO)
      6. 7.3.6  CAN Bus short-circuit current limiting
      7. 7.3.7  Thermal Shutdown (TSD)
      8. 7.3.8  Undervoltage Lockout
      9. 7.3.9  Unpowered Device
      10. 7.3.10 Floating pins
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Modes
      2. 7.4.2 Normal Mode
      3. 7.4.3 Standby Mode
        1. 7.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
      4. 7.4.4 Driver and Receiver Function
  9. Application and Implementation
    1. 8.1 Typical Application
      1. 8.1.1 Design Requirements
        1. 8.1.1.1 CAN Termination
      2. 8.1.2 Detailed Design Procedures
        1. 8.1.2.1 Bus Loading, Length and Number of Nodes
    2. 8.2 System Examples
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

CAN Bus short-circuit current limiting

The TCAN6062-Q1 has several protection features that limit the short-circuit current when a CAN bus line is shorted. These include CAN driver current limiting in all driver states and TXD dominant state timeout which prevents permanently having the higher short-circuit current of a dominant state in case of a system fault. During CAN communication the bus switches between multiple states; therefore, the short-circuit current may be viewed as either the current during each bus state or as a weighted average DC current. When selecting termination resistors or a common mode choke for the CAN design the average power rating, IOS(AVG), should be used.

The average short-circuit current of the bus depends on the weighted average of each driver state during the fault and each state's respective short-circuit current. The average short-circuit current may be calculated using Equation 2.

Equation 2. IOS(AVG) = % Transmit x [(% REC_Bits x IOS(SS)_REC) + (% DOM_Bits x IOS(SS)_DOM) + (% XL_Bits x IOS(SS)_XL] +
[% Receive x IOS(SS)_REC]

Where:

  • IOS(AVG) is the average short-circuit current
  • % Transmit is the percentage the node is transmitting CAN messages
  • % Receive is the percentage the node is receiving CAN messages
  • % REC_Bits is the percentage of recessive bits in the transmitted CAN messages
  • % DOM_Bits is the percentage of dominant bits in the transmitted CAN messages
  • % XL_Bits is the percentage of FAST TX bits in the transmitted CAN messages
  • IOS(SS)_REC is the recessive steady state short-circuit current
  • IOS(SS)_DOM is the dominant steady state short-circuit current
  • IOS(SS)_XL is the FAST TX mode steady state short-circuit current

This short-circuit current and the possible fault cases of the network should be taken into consideration when sizing the power supply used to generate the transceiver's VCC supply.