SLLSFS2 September   2025 TCAN6062-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configurations and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 ESD Ratings, IEC Transients
    4. 5.4 Recommended Operating Conditions
    5. 5.5 Thermal Characteristics
    6. 5.6 Supply Characteristics
    7. 5.7 Dissipation Ratings
    8. 5.8 Electrical Characteristics
    9. 5.9 Switching Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 Signal Improvement Capability
      2. 7.1.2 CAN XL and FAST Mode
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Pin Description
        1. 7.3.1.1 TXD
        2. 7.3.1.2 GND
        3. 7.3.1.3 VCC
        4. 7.3.1.4 RXD
        5. 7.3.1.5 VIO (only for TCAN6062V-Q1)
        6. 7.3.1.6 CANH and CANL
        7. 7.3.1.7 STB (Standby)
      2. 7.3.2  CAN Bus States
      3. 7.3.3  Pulse-Width Modulation (PWM) for FAST Mode Signaling
        1. 7.3.3.1 PWM Detection and Timing
        2. 7.3.3.2 Transition from SIC Mode to FAST RX Mode
        3. 7.3.3.3 Transition from SIC Mode to FAST TX Mode
        4. 7.3.3.4 PWM Decoding
          1. 7.3.3.4.1 PWM Detection Resolution tDECODE
          2. 7.3.3.4.2 PWM Decoding in FAST RX Mode
          3. 7.3.3.4.3 PWM Decoding in FAST TX Mode
        5. 7.3.3.5 Transition from FAST RX/TX Modes to SIC Mode
      4. 7.3.4  Out-of-Bounds (OOB) Comparator
      5. 7.3.5  TXD Dominant Timeout (DTO)
      6. 7.3.6  CAN Bus short-circuit current limiting
      7. 7.3.7  Thermal Shutdown (TSD)
      8. 7.3.8  Undervoltage Lockout
      9. 7.3.9  Unpowered Device
      10. 7.3.10 Floating pins
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Modes
      2. 7.4.2 Normal Mode
      3. 7.4.3 Standby Mode
        1. 7.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode
      4. 7.4.4 Driver and Receiver Function
  9. Application and Implementation
    1. 8.1 Typical Application
      1. 8.1.1 Design Requirements
        1. 8.1.1.1 CAN Termination
      2. 8.1.2 Detailed Design Procedures
        1. 8.1.2.1 Bus Loading, Length and Number of Nodes
    2. 8.2 System Examples
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Out-of-Bounds (OOB) Comparator

In SIC mode, an out-of-bounds (OOB) comparator is active, which monitors CANH and CANL to determine whether level_1 signals occur on the bus inputs. These events are signaled as low-level outputs on RXD, allowing CAN controllers to detect when unexpected FAST mode CAN XL activity is occurring on the bus while the node transceiver is still in SIC mode.

TCAN6062-Q1 TCAN6062V-Q1 OOB Comparator Output to
                    RXD Figure 7-12 OOB Comparator Output to RXD

The OOB comparator serves as a protection against false idle events. The SIC receiver thresholds are above the output requirements for level_0 and level_1 signals for transmitters, causing SIC receivers to detect all of this activity as recessive. This can cause situations where the controller is unaware of CAN XL FAST mode activity on the CAN bus if the transceiver is still in SIC mode. The OOB comparator initiates activity on RXD pin, allowing the CAN XL controller to detect this activity.

Signals detected by the OOB comparator are considered invalid signals for CAN FD and other non-XL communication schemes, so this feature does not pose a compatibility risk when the TCAN6062-Q1 is used for legacy CAN, CAN FD, and CAN SIC applications where FAST mode is not implemented.