SLVSHC8 May 2023 DRV8334-Q1
PRODMIX
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| POWER SUPPLIES (PVDD) | ||||||
| IPVDDQ | PVDD sleep mode current | VPVDD = 12 V, nSLEEP = 0, TA = 25°C, IPVDDQ = PVDD + VDRAIN |
7 | 10 | µA | |
| IPVDDQ | PVDD sleep mode current | VPVDD = 24 V, nSLEEP = 0, TA = 25°C, IPVDDQ = PVDD + VDRAIN |
8 | 12 | µA | |
| IPVDDQ | PVDD sleep mode current | VPVDD = < 36V, nSLEEP = 0, IPVDDQ = PVDD + VDRAIN |
9 | 30 | µA | |
| IPVDD | PVDD active mode current | VPVDD = 24 V, nSLEEP = HIGH, INHx = INLX = Low. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 24 V |
25 | 38 | mA | |
| IPVDD | PVDD active mode current | VPVDD = 60 V, nSLEEP = HIGH, INHx = INLX = Low. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 60 V, VCP_MODE = 00b, 01b, 11b |
26 | 40 | mA | |
| IPVDD | PVDD active mode current | VPVDD = 24 V, nSLEEP = HIGH, INHx = INLX = Switching@20kHz, No FETs connected, IPVDD = PVDD + VDRAIN |
25 | 38 | mA | |
| IPVDD | PVDD active mode current | VPVDD = 60 V, nSLEEP = HIGH, INHx = INLX = Switching@20kHz. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 60 V, VCP_MODE = 00b, 01b, 11b | 26 | 40 | mA | |
| tWAKE | Turn-on time | nSLEEP = Low to High; nFAULT goes High. |
1 | 5 | ms | |
| LOGIC-LEVEL INPUTS (INHx, INLx, nSLEEP etc) | ||||||
| VIL | Input logic low voltage | 0.8 | V | |||
| VIH | Input logic high voltage | 2.1 | V | |||
| VHYS | Input hysteresis | 200 | 330 | 450 | mV | |
| VIL | DRVOFF input logic low voltage | DRVOFF |
0.8 | V | ||
| VIH | DRVOFF input logic high voltage | DRVOFF | 2.1 | V | ||
| VHYS | DRVOFF input hysteresis | DRVOFF | 190 | 350 | 600 | mV |
| RPD | Input pulldown resistance | To GND; INHx, INLx, SCLK, SDI | 50 | 100 | 150 | kΩ |
| RPD | Input pulldown resistance | nSLEEP, DRVOFF | 460 | 800 | 1700 | kΩ |
| IIL | Input logic low current | VI = 0 V; nSCS (internal pull up); VIO = 3.3V | 11 | 33 | 66 | µA |
| IIL | Input logic low current | VI = 0 V; nSCS (internal pull up); VIO = 5V | 25 | 50 | 100 | µA |
| IIH | Input logic high current | VI = 5 V, INHx/INLx/SDI/SCLK | 30 | 50 | 70 | µA |
| VIH | nSleep input logic high voltage | 2.1 | V | |||
| VIL | nSleep input logic low voltage | 0.8 | V | |||
| VHYST | nSleep input logic hysteresis | 0.1 | V | |||
| LOGIC-LEVEL OUTPUTS (nFAULT, SDO, PHCx) | ||||||
| VOL | Output logic low voltage | IDOUT = 1 mA, PHCOMP | 0.5 | V | ||
| VOL | Output logic low voltage | IDOUT = 1 mA, SDO | 0.5 | V | ||
| VOH | Output logic high voltage | IDOUT = 1 mA, SDO, 3.3V mode | 2.7 | 3.3 | 3.6 | V |
| VOH | Output logic high voltage | IDOUT = 1 mA, PHCOMP, 5V mode; VPVDD ≥ 4.5V | 4.0 | 5 | 5.5 | V |
| VOH | Output logic high voltage | IDOUT = 1 mA, SDO, 5V mode; VPVDD ≥ 4.5V | 4.0 | 5 | 5.5 | V |
| VOH | Output logic high voltage | IDOUT = 1 mA, SDO, 5V mode; 4V ≤VPVDD < 4.5V | 3.6 | 3.8 | 4.5 | V |
| IOZ | Output logic high current | nFAULT : Force nFAULT = 5 V, no fault event, nSLEEP = High SDO : Force VSDO = 5V, nSCS = High or nSLEEP = Low |
–12 | 25 | µA | |
| IOZ | Output logic high current | SDO : Force VSDO = 0V, nSCS = High or nSLEEP = Low | –12 | 10 | µA | |
| CHARGE PUMP (GVDD, VCP) | ||||||
| VGVDD | GVDD Gate driver regulator voltage (LDO mode) | 22 V ≤VPVDD ; IGS ≤50 mA | 11.5 | 13.5 | V | |
| 18 V ≤VPVDD ≤ 22 V; IGS ≤ 50 mA | 11.5 | 13.5 | V | |||
| GVDD Gate driver regulator voltage (Charge pump mode) | 7.2 V ≤VPVDD ≤ 18 V; IGS = 50 mA ; IVCP = 5mV | 11.5 | 13.5 | V | ||
| 6.5 V ≤VPVDD ≤ 7.2 V; IGS ≤ 20 mA; IVCP = 3mA |
11.5 | 13.5 | V | |||
| 5 V ≤VPVDD ≤ 6.5 V; IGS ≤ 20 mA; IVCP = 3mA |
9 | 13 | V | |||
| 4.5 V ≤VPVDD ≤ 5 V; IGS ≤ 20 mA, IVCP = 3mA; |
8 | 10 | V | |||
| VVCP | VCP charge pump voltage (with respect to VDRAIN) | VVCP = V(VCP - VDRAIN; 13.5 ≥ GVDD ≥ 11 V; VDRAIN > 4.5V; IVCP 5 mA; |
9.5 | 13.5 | V | |
| VVCP = V(VCP - VDRAIN) ; 9V ≤ GVDD < 11V; VDRAIN > 4.5V; IVCP = 3 mA; |
8.3 | 11 | ||||
| VVCP = V(VCP - VDRAIN) ; 8V ≤ GVDD < 9V; VDRAIN > 4.5V; IVCP = 3 mA; |
7.36 | 9 | ||||
| tBST_PRECHG | VCP charge pump bootstrap cap pre-charge time | VBST-SHX = 5V ;INHx = INLx = Low. Tj = 150C, IVCP = 3mA; CVCP = 1.5uF; CBST = 1.5uF (each phase), CVCP_FLY = 1uF; VPVDD = 4.5V |
1.7 | 3 | ms | |
| VBST_TCPOFF | BST monitor voltage for VCP to stop charging the BST cap (rising voltage) | INLx = 0; SHx = 0, VDRAIN; VDRAIN = PVDD = 12V, 60V; | 12.0 | 13.2 | 14.6 | V |
| BOOTSTRAP DIODES | ||||||
| VBOOTD | Bootstrap diode forward voltage | IBOOT = 100 µA | 0.55 | 0.85 | V | |
| IBOOT = 10 mA | 0.85 | 1.1 | ||||
| VBOOTD | Bootstrap diode forward voltage | IBOOT = 100 mA.TJ < 150℃ | 1.6 | V | ||
| RBOOTD | Bootstrap dynamic resistance (ΔVBOOTD/ΔIBOOT) | IBOOT = 100 mA and 50 mA. TJ < 150C | 6.6 | 9.1 | Ω | |
| GATE DRIVERS (GHx, GLx, SHx, SLx) | ||||||
| VGL_L | Low-side Low-level output voltage | IGLx = 10mA, GLx - SLx; IDRVN = 100100b: IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
| VGL_H | Low-side High-level output voltage | IGLx = 10mA, GVDD - GLx ; IDRVP = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
| VGH_L | High-side Low-level output voltage | IGHx = 10mA, GHx - SHx; IDRVN = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
| VGH_H | High-side High-level output voltage | IGHx = 10mA, BSTx - GHx; IDRVP = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V; | 0 | 0.2 | V | |
| RPDSA_LS | Low side semi active pull down resistor | GLx to SLx; nSLEEP = Low, VGLx - VSLx = 2V, GVDD (BSTx-SHx) > 2V | 2 | 3 | 4.3 | kΩ |
| RPDSA_HS | High side semi active pull down resistor | GHx to SHx; nSLEEP = Low, VGHx - VSHx = 2V, GVDD (BSTx-SHx) > 2V | 7 | 9 | 12 | kΩ |
| IDRVN | Peak sink gate current | IDRVN=000000b; VGSx = 5V; BST-SHx = GVDD = 12V | 0.85 | mA | ||
| IDRVN=000001b; VGSx = 5V; BST-SHx = GVDD = 12V | 1.2 | |||||
| IDRVN=000010b; VGSx = 5V; BST-SHx = GVDD = 12V | 1.6 | |||||
| IDRVN=000011b; VGSx = 5V; BST-SHx = GVDD = 12V | 2.0 | |||||
| IDRVN=000100b; VGSx = 5V; BST-SHx = GVDD = 12V | 2.4 | |||||
| IDRVN=000101b; VGSx = 5V; BST-SHx = GVDD = 12V | 3.0 | |||||
| IDRVN=000110b; VGSx = 5V; BST-SHx = GVDD = 12V | 3.6 | |||||
| IDRVN=000111b; VGSx = 5V; BST-SHx = GVDD = 12V | 4.2 | |||||
| IDRVN=001000b; VGSx = 5V; BST-SHx = GVDD = 12V | 4.7 | |||||
| IDRVN=001001b; VGSx = 5V; BST-SHx = GVDD = 12V | 5.7 | |||||
| IDRVN=001010b; VGSx = 5V; BST-SHx = GVDD = 12V | 6.7 | |||||
| IDRVN=001011b; VGSx = 5V; BST-SHx = GVDD = 12V | 7.8 | |||||
| IDRVN=001100b; VGSx = 5V; BST-SHx = GVDD = 12V | 8.8 | |||||
| IDRVN=001101b; VGSx = 5V; BST-SHx = GVDD = 12V | 10 | |||||
| IDRVN=001110b; VGSx = 5V; BST-SHx = GVDD = 12V | 11.5 | |||||
| IDRVN=001111b; VGSx = 5V; BST-SHx = GVDD = 12V | 13 | |||||
| IDRVN=010000b; VGSx = 5V; BST-SHx = GVDD = 12V | 14 | |||||
| IDRVN=010001b; VGSx = 5V; BST-SHx = GVDD = 12V | 17 | |||||
| IDRVN=010010b; VGSx = 5V; BST-SHx = GVDD = 12V | 19 | |||||
| IDRVN=010011b; VGSx = 5V; BST-SHx = GVDD = 12V | 26 | |||||
| IDRVN=010100b; VGSx = 5V; BST-SHx = GVDD = 12V | 29 | |||||
| IDRVN=010101b; VGSx = 5V; BST-SHx = GVDD = 12V | 32 | |||||
| IDRVN | Peak sink gate current | IDRVN=010110b; VGSx = 5V; BST-SHx = GVDD = 12V | 37 | mA | ||
| IDRVN=010111b; VGSx = 5V; BST-SHx = GVDD = 12V | 43 | |||||
| IDRVN=011000b; VGSx = 5V; BST-SHx = GVDD = 12V | 49 | |||||
| IDRVN=011001b; VGSx = 5V; BST-SHx = GVDD = 12V | 58 | |||||
| IDRVN=011010b; VGSx = 5V; BST-SHx = GVDD = 12V | 77 | |||||
| IDRVN=011011b; VGSx = 5V; BST-SHx = GVDD = 12V |
92 | |||||
| IDRVN=011100b; VGSx = 5V; BST-SHx = GVDD = 12V |
100 | |||||
| IDRVN=011101b; VGSx = 5V; BST-SHx = GVDD = 12V | 120 | |||||
| IDRVN=011110b; VGSx = 5V; BST-SHx = GVDD = 12V | 140 | |||||
| IDRVN=011111b; VGSx = 5V; BST-SHx = GVDD = 12V | 155 | |||||
| IDRVN=100000b; VGSx = 5V; BST-SHx = GVDD = 12V | 175 | |||||
| IDRVN=100001b; VGSx = 5V; BST-SHx = GVDD = 12V | 210 | |||||
| IDRVN=100010b; VGSx = 5V; BST-SHx = GVDD = 12V | 240 | |||||
| IDRVN=100011b; VGSx = 5V; BST-SHx = GVDD = 12V | 270 | |||||
| IDRVP | Peak source gate current | IDRV_CFG = 0b; IDRV_RATIO = 00b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
1*IDRVN | mA | ||
| IDRV_CFG = 0b; IDRV_RATIO = 01b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
0.75*IDRVN | mA | ||||
| IDRV_CFG = 0b; IDRV_RATIO = 10b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
0.5*IDRVN | mA | ||||
| IDRV_CFG = 0b; IDRV_RATIO = 11b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V |
0.25*IDRVN | mA | ||||
| IDRVN_VAR | Peak sink gate current variation | IDRVN=000000b - 010011b, with respect to TYP | -55 | +55 | % | |
| IDRVN=010011b - 100011b, with respect to TYP | -45 | +45 | % | |||
| IDRVN | Peak sink gate current - switch mode | IDRVN=100100b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 370 | 600 | 980 | mA |
| IDRVN=100101b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 440 | 700 | 1050 | mA | ||
| IDRVN=100110b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 500 | 795 | 1250 | mA | ||
| IDRVN=100111b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 580 | 910 | 1365 | mA | ||
| IDRVN=101000b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 720 | 1090 | 1600 | mA | ||
| IDRVN=101001b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 820 | 1255 | 1820 | mA | ||
| IDRVN=101010b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 910 | 1455 | 2200 | mA | ||
| IDRVN=101011b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 1000 | 1685 | 2500 | mA | ||
| IDRVN=101100b; VGSx (GHx-SHx, GLx-SLx) = 12V; BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b | 1080 | 2000 | 2600 | mA | ||
IDRVP |
Peak source gate current - switch mode | IDRVP=100100b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 160 | 300 | 450 | mA |
| IDRVP=100101b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 160 | 320 | 480 | mA | ||
| IDRVP=100110b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 200 | 380 | 570 | mA | ||
| IDRVP=100111b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 215 | 430 | 645 | mA | ||
| IDRVP=101000b;VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 250 | 500 | 750 | mA | ||
| IDRVP=101001b;VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 300 | 600 | 850 | mA | ||
| IDRVP=101010b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 360 | 700 | 970 | mA | ||
| IDRVP=101011b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 400 | 800 | 1150 | mA | ||
| IDRVP=101100b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V | 500 | 1000 | 1300 | mA | ||
| IHOLD_PU | Gate pull up hold current | IHOLD_SEL = 1b; BST-SHx = GVDD = 12V. | 150 | 250 | 400 | mA |
| IHOLD_PU | Gate pull up hold current | IHOLD_SEL = 0b; BST-SHx = GVDD = 12V. | 330 | 560 | 900 | mA |
| IHOLD_PD | Gate pull down hold current | IHOLD_SEL = 1b; BST-SHx = GVDD = 12V. | 140 | 267 | 480 | mA |
| IHOLD_PD | Gate pull down hold current | IHOLD_SEL = 0b; BST-SHx = GVDD = 12V. | 580 | 1100 | 1500 | mA |
| ISTRONG | Gate pull down strong current | GHx-SHx = 12V (High side) or GLx = 12V (Low Side); BST-SHx = GVDD = 12V. | 1000 | 2000 | 2800 | mA |
| GATE DRIVER TIMINGS (GHx, GLx) | ||||||
| tPD | Input to output propagation delay GHx/GLx falling | INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b ; After INHx/INLx falling edge to VGS = VGHS/VGLS – 1 V; VGVDD = VBSTx-SHx ≥ 8V |
90 | 150 | ns | |
| tPD | Input to output propagation delay GHx/GLx falling | INHx, INLx to GHx, GLx. IDRVN = IDRVP = 011101b ; After INHx/INLx falling edge to VGS = VGHS/VGLS – 1 V; VGVDD = VBSTx-SHx ≥ 8V |
110 | 150 | ns | |
| tPD | Input to output propagation delay GHx/GLx rising | INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V |
90 | 152 | ns | |
| tPD | Input to output propagation delay GHx/GLx rising | INHx, INLx to GHx, GLx.IDRVN = IDRVP = 011101b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V |
100 | 150 | ns | |
| tPD | Input to output propagation delay GHx/GLx rising | Rev2p0 new DRV_BIAS_MODE = 01b INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V |
60 | 170 | ns | |
| tPD | Input to output propagation delay GHx/GLx rising | Rev2p0 new DRV_BIAS_MODE = 10b, 11b INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V |
100 | 220 | ns | |
| tPD_match | Matching propagation delay per phase | GHx turning OFF to GLx turning ON, GLx turning OFF to GHx turning ON; VGVDD = VBSTx-SHx ≥ 8V | –150 | 10 | 150 | ns |
| tPD_match | Matching propagation delay phase to phase | GHx/GLx turning ON to GHy/GLy turning ON, GHx/GLx turning OFF to GHy/GLy turning OFF; VGVDD = VBSTx-SHx ≥ 8V | –50 | 10 | 50 | ns |
| tDRIVE | Peak current gate drive time | Typical value.TDRVP (TDRVN) = 0000b - 1111b. Refer to register map TDRNP and TDRVN. | 140 | 3821 | ns | |
| tDRIVE_V | Peak current gate drive time variation | With respect to typical value.TDRVP (TDRVN) = 0000b - 1111b | -20 | 20 | % | |
| tDEAD | Digital Gate drive dead time | DEADTIME = 000b; | 30 | 70 | 130 | ns |
| DEADTIME = 001b; | 170 | 214 | 300 | ns | ||
| DEADTIME = 010b | 230 | 286 | 380 | ns | ||
| DEADTIME = 011b | 420 | 500 | 640 | ns | ||
| DEADTIME = 100b | 640 | 750 | 930 | ns | ||
| DEADTIME = 101b | 880 | 1000 | 1280 | ns | ||
| DEADTIME = 110b | 1270 | 1500 | 1820 | ns | ||
| DEADTIME = 111b | 1700 | 2000 | 2400 | ns | ||
| CURRENT SHUNT AMPLIFIERS (SNx, SOx, SPx, VREF) | ||||||
| ACSA | Sense amplifier gain | CSAGAIN = 0000b | 5 | V/V | ||
| CSAGAIN = 0001b; | 10 | V/V | ||||
| CSAGAIN = 0010b | 12 | V/V | ||||
| CSAGAIN = 0011b | 16 | V/V | ||||
| CSAGAIN = 0100b | 20 | V/V | ||||
| CSAGAIN = 0101b | 23 | V/V | ||||
| CSAGAIN = 0110b | 25 | V/V | ||||
| CSAGAIN = 0111b | 30 | V/V | ||||
| CSAGAIN = 1000b | 40 | V/V | ||||
| EACSA | Sense amplifier gain error | All CSAGAIN setting VGVDD > 7.2V (this GVDD condition is applied to all CSA items) |
-0.55 | 0.55 | % | |
| tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 5 V/V, RSO = 160Ω, CSO = 470pF ; VREF = 5V/3V |
0.6 | 1.6 | µs | |
| tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 10 V/V, CLOAD = 470pF |
0.65 | 1.5 | µs | |
| tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 20 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V/3V |
0.7 | 1.55 | µs | |
| tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 30 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V | 0.7 | 1.5 | µs | |
| tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 30 V/V, RSO = 160Ω, CSO = 470pF VREF = 3V | 0.7 | 1.6 | µs | |
| tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 40 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V | 0.7 | 1.7 | µs | |
| tSET | Settling time to ±1% | VSTEP = 1.6 V, ACSA = 40 V/V, RSO = 160Ω, CSO = 470pF VREF = 3V | 0.7 | 1.75 | µs | |
| UGB | Unity Gain Bandwidth | CLOAD = 470pF; closed loop, BW @ unity gain |
10 | MHz | ||
| BW | Bandwidth | closed loop, -3db, no output load | 1 | MHz | ||
| VSWING | Output voltage range | VVREF = 3 to 5.5 V |
0.25 | VVREF - 0.25 | V | |
| VCOM | Common-mode input range | VCOM = (VSP + VSN) / 2 | -2 | 2 | V | |
| tcom_rec | Common-mode transient recovery timing | VCOM = -15V to 0V |
2.9 | µs | ||
| VDIFF | Differential-mode input range | -0.3 | 0.3 | V | ||
| VOFF | Input offset voltage total | VSP = VSN = GND; CSAGAIN = 0000b (Gain 5) Initial offset + Offset drift, Gain = 5 |
–0.6 | 0.5 | mV | |
| VOFF | Input offset voltage total | VSP = VSN = GND; CSAGAIN = 0001b - 1000b (Gain 10 - Gain 40) Initial offset + Offset drift |
–0.5 | 0.5 | mV | |
| VOFF_DRIFT | Input drift offset voltage | VSP = VSN = GND; temperature drift + aging |
±0.1 | mV | ||
| IBIAS | Input bias current | VSP = VSN = GND. CSA and SENSE_OCP total | 20 | 100 | µA | |
| IBIAS_OFF | Input bias current offset | ISP – ISN. CSA and SENSE_OCP total | -1.5 | 1.5 | µA | |
| IVREF | Reference input current | VCSAREF = 3.3 V | 3 | 6 | 9.25 | mA |
| VCSAREF = 5 V | 4 | 7 | 9.5 | mA | ||
| CMRR | DC Common-mode rejection ratio | SN/SP = -2V to 2V | 60 | 90 | dB | |
| CMRR | Transient Common-mode rejection ratio | 20KHz | 60 | 90 | dB | |
| PSRR | Power-supply rejection ratio | 100 | dB | |||
| tCSAAZ_INIT | Initial CSA Auto Zero | From CSA_EN = 1b to the end of initial CSA Auto Zero function |
26 | 32 | 38 | µS |
| tCSAAZ_MIN | CSA Auto Zero TimeOut Period | CSA_EN = 1b. INHx and INLx toggling. |
170 | µS | ||
| tCSAAZ_MAX | CSA Auto Zero TimeOut Period | CSA_EN = 1b. INHx=INLx= low |
260 | µS | ||
| Temperature Reporting | ||||||
| SUPPLY VOLTAGE MONITORS | ||||||
| VPVDD_UV | PVDD undervoltage lockout threshold | VPVDD rising | 4.5 | 4.65 | 4.8 | V |
| VPVDD falling | 4.05 | 4.2 | 4.35 | |||
| VPVDD_UV_HYS | PVDD undervoltage lockout hysteresis | Rising to falling threshold | 400 | 450 | 500 | mV |
| tPVDD_UV_DG | PVDD undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VPVDD_UVW | PVDD undervoltage warning threshold | VPVDD rising; PVDD_UVW_LVL= 0b; | 6.0 | 7 | V | |
| VPVDD falling; PVDD_ULW_LVL= 0b; | 5.8 | 6.8 | V | |||
| VPVDD rising; PVDD_UVW_LVL = 1b; | 7.3 | 8.3 | V | |||
| VPVDD falling; PVDD_UVW_LVL = 1b; | 7.1 | 8.1 | V | |||
| VPVDD_UVW_HYS | PVDD undervoltage warning hysteresis | Rising to falling threshold | 140 | 200 | 260 | mV |
| tPVDD_UVW_DG | PVDD undervoltage warning deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VPVDD_OV | PVDD overvoltage threshold | VPVDD rising, PVDD_OV_LVL = 00b | 28 | 31 | V | |
| VPVDD falling, PVDD_OV_LVL = 00b | 27 | 30 | ||||
| VPVDD rising, PVDD_OV_LVL = 01b | 33 | 36 | ||||
| VPVDD falling, PVDD_OV_LVL = 01b | 32 | 35 | ||||
| VPVDD rising, PVDD_OV_LVL = 10b | 50 | 55 | ||||
| VPVDD falling, PVDD_OV_LVL = 10b | 47 | 52 | ||||
| VPVDD_OV_HYS | PVDD overvoltage hysteresis | Rising to falling threshold PVDD_OV_LVL = 00b, 01b | 0.6 | 0.9 | 1.2 | V |
| VPVDD_OV_HYS | PVDD overvoltage hysteresis | Rising to falling threshold PVDD_OV_LVL = 10b | 2.0 | 2.2 | 2.4 | V |
| tPVDD_OV_DG | PVDD overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VGVDD_UV | GVDD undervoltage threshold | VGVDD rising - after power up | 7.0 | 7.8 | V | |
| VGVDD rising - power up only | 7.5 | 8.1 | V | |||
| VGVDD falling | 6.8 | 7.6 | V | |||
| VGVDD_UV_HYS | GVDD undervoltage hysteresis | Rising to falling threshold | 185 | 215 | 245 | mV |
| tGVDD_UV_DG | GVDD undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VGVDD_OV | GVDD overvoltage threshold | VGVDD rising | 15 | 17 | V | |
| VGVDD falling | 14.5 | 16.5 | ||||
| VGVDD_OV_HYS | GVDD overvoltage hysteresis | Rising to falling threshold | 490 | 560 | 630 | mV |
| tGVDD_OV_DG | GVDD overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VBST_UV | Bootstrap undervoltage threshold | VBSTx- VSHx; VBSTx rising; BST_UV_LVL = 1b | 6.3 | 7.4 | 8.5 | V |
| VBSTx- VSHx; VBSTx falling; BST_UV_LVL = 1b | 6.1 | 7.2 | 8.3 | |||
| VBST_UV | Bootstrap undervoltage threshold | VBSTx- VSHx; VBSTx rising; BST_UV_LVL = 0b | 3.8 | 4.4 | 5 | V |
| VBSTx- VSHx; VBSTx falling; BST_UV_LVL = 0b | 3.60 | 4.2 | 4.8 | V | ||
| VBST_UV_HYS | Bootstrap undervoltage hysteresis | Rising to falling threshold BST_UV_LVL = 0b and 1b |
120 | 200 | 280 | mV |
| tBST_UV_DG | Bootstrap undervoltage deglitch time | rising and falling edge | 4 | 6 | 8 | µs |
| VBST_OV | Bootstrap overvoltage threshold | VBSTx- VSHx; VBSTx rising | 15.2 | 18 | V | |
| VBSTx- VSHx; VBSTx falling | 15 | 17.8 | ||||
| VBST_OV_HYS | Bootstrap overvoltage hysteresis | 110 | 200 | 260 | mV | |
| tBST_OV_DG | Bootstrap overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VCP_UV | VCP undervoltage threshold | VCP - VDRAIN; rising | 6 | 6.7 | 7.36 | V |
| VCP - VDRAIN; falling | 5.9 | 6.6 | 7.25 | |||
| tCP_UV_DG | VCP undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VCP_OV | VCP overvoltage threshold | VCP - VDRAIN; rising | 14.1 | 17.1 | V | |
| VCP - VDRAIN; falling | 13.8 | 16.7 | ||||
| tCP_OV_DG | VCP overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VDRAIN_UV | VDRAIN undervoltage threshold | VVDRAIN rising | 4.25 | 4.35 | 4.45 | V |
| VDRAIN_UV | VDRAIN undervoltage threshold | VVDRAIN falling | 4.05 | 4.15 | 4.25 | V |
| VDRAIN_UV_HYS | VDRAIN undervoltage hysteresis | 160 | 190 | 210 | mV | |
| tVDRAIN_UV_DG | VDRAIN undervoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| VDRAIN_OV | VDRAIN overvoltage threshold | VVDRAIN rising, VDRAIN_OV_LVL = 00b | 28 | 31 | V | |
| VVDRAIN falling, VDRAIN_OV_LVL = 00b | 27 | 30 | V | |||
| VVDRAIN rising, VDRAIN_OV_LVL = 01b | 33 | 36 | V | |||
| VVDRAIN falling, VDRAIN_OV_LVL = 01b | 32 | 35 | V | |||
| VVDRAIN rising, VDRAIN_OV_LVL = 10b, 11b | 50 | 55 | V | |||
| VVDRAIN falling, VDRAIN_OV_LVL = 10b, 11b | 48 | 353 | V | |||
| VDRAIN_OV_HYS | VDRAIN overvoltage hysteresis | Rising to falling threshold, VDRAIN_OV_LVL = 00b, 01b | 0.7 | 1.0 | 1.3 | V |
| VDRAIN_OV_HYS | VDRAIN overvoltage hysteresis | Rising to falling threshold, VDRAIN_OV_LVL = 10b, 11b | 1.9 | 2.3 | 2.6 | V |
| tVDRAIN_OV_DG | VDRAIN overvoltage deglitch time | rising and falling edge | 8 | 12 | 16 | µs |
| PROTECTION CIRCUITS | ||||||
| VGS_LVL_H | Gate voltage monitor threshold | VGHx – VSHx, VGLx – VSLx, INLx / INHx=H; VGS_LVL = 1'b1 |
6.9 | 8.5 | V | |
| VGS_LVL_H | Gate voltage monitor threshold | VGHx – VSHx, VGLx – VSLx, INLx / INHx=H; VGS_LVL = 1'b0 |
5 | 6.3 | V | |
| VGS_LVL_L | Gate voltage monitor threshold | VGHx – VSHx, VGLx – VSLx, INLx / INHx=L | 1.3 | 2 | V | |
| tGS_DG | VGS gate voltage monitor deglitch time | VGS_DG = 000b |
0.3 | 0.6 | 0.8 | µs |
| VGS_DG = 001b | 0.6 | 1.0 | 1.3 | µs | ||
| VGS_DG = 010b, | 1.1 | 1.5 | 1.9 | µs | ||
| VGS_DG = 011b, VGS_DG = 1xxb | 1.6 | 2.0 | 2.5 | µs | ||
| tGS_BLK | VGS gate voltage monitor blanking time | VGS_BLK = 000b | 1.7 | 2.25 | 2.9 | µs |
| VGS_BLK = 001b | 2.4 | 3 | 3.6 | µs | ||
| VGS_BLK = 010b | 4.0 | 5 | 5.8 | µs | ||
| VGS_BLK = 011b | 5.9 | 7 | 8.2 | µs | ||
| VGS_BLK = 100b, 101b, 110b, 111b | 8.6 | 10 | 11.9 | µs | ||
| VDS_LVL | VDS overcurrent protection threshold | VDS_LVL = 0000b; SLx = -0.2V to +2.0V. VDS_CM = 0b | 0.036 | 0.06 | 0.085 | V |
| VDS_LVL | VDS overcurrent protection threshold | VDS_LVL = 0001b; SLx = -0.2V to +2.0V. VDS_CM = 0b | 0.059 | 0.08 | 0.11 | V |
| VDS_LVL | VDS overcurrent protection threshold | VDS_LVL = 0010b; SLx = -0.2V to +2.0V. VDS_CM = 0b, |
0.064 | 0.10 | 0.13 | V |
| VDS_LVL | VDS overcurrent protection threshold | VDS_LVL = 0011b; SLx = -0.3V to +2.0V. | 0.082 | 0.12 | 0.16 | V |
| VDS_LVL | VDS overcurrent protection threshold | VDS_LVL = 0100b; SLx = -0.3V to +2.0V. | 0.13 | 0.16 | 0.20 | V |
| VDS_LVL = 0101b; SLx = -0.3V to +2.0V. | 0.2 | 0.24 | 0.29 | |||
| VDS_LVL = 0110b; SLx = -0.3V to +2.0V. | 0.27 | 0.32 | 0.385 | |||
| VDS_LVL = 0111b; SLx = -0.3V to +2.0V. | 0.34 | 0.4 | 0.47 | |||
| VDS_LVL = 1000b; SLx = -0.3V to +2.0V. | 0.44 | 0.5 | 0.58 | |||
| VDS_LVL = 1001b; SLx = -0.3V to +2.0V. | 0.59 | 0.67 | 0.77 | |||
| VDS_LVL = 1010b; SLx = -0.3V to +2.0V. | 0.75 | 0.83 | 0.96 | |||
| VDS_LVL = 1011b; SLx = -0.3V to +2.0V. | 0.90 | 1 | 1.15 | |||
| VDS_LVL = 1100b; SLx = -0.3V to +2.0V. | 1.12 | 1.27 | 1.43 | |||
| VDS_LVL = 1101b; SLx = -0.3V to +2.0V. | 1.35 | 1.53 | 1.71 | |||
| VDS_LVL = 1110b;SLx = -0.3V to +2.0V. | 1.57 | 1.78 | 1.99 | |||
| VDS_LVL = 1111b;SLx = -0.3V to +2.0V. | 1.79 | 2 | 2.27 | |||
| tDS_CMP | VDS comparator delay | VDS (comparator input voltage) from 0V to max of VDS_LVL (comparator output rising), delay time of internal comparator. |
0.5 | 1.0 | µs | |
| VDS (comparator input voltage) from VDRAIN to min of VDS_LVL (comparator output falling), delay time of internal comparator. |
1.0 | 1.6 | ||||
| tDS_DG | VDS overcurrent deglitch | VDS_DG = 000b |
0.4 | 0.6 | 0.8 | µs |
| VDS_DG = 001b | 0.7 | 1 | 1.3 | |||
| VDS_DG = 010b | 1.2 | 1.5 | 2.0 | |||
| VDS_DG = 011b | 1.5 | 2 | 2.5 | |||
| VDS_DG = 100b | 3.3 | 4 | 4.8 | |||
| VDS_DG = 101b | 5.2 | 6 | 7.35 | |||
| VDS_DG = 110b, 111b | 6.8 | 8 | 9.2 | |||
| tDS_BLK | VDS overcurrent blanking time | VDS_BLK = 000b | 0 | 0.2 | µs | |
| VDS_BLK = 001b | 0.4 | 0.5 | 0.7 | |||
| VDS_BLK = 010b | 0.7 | 1 | 1.5 | |||
| VDS_BLK = 011b | 1.4 | 2 | 2.6 | |||
| VDS_BLK = 100b | 5.0 | 6 | 7.2 | |||
| VDS_BLK = 101b | 6.8 | 8 | 9.4 | |||
| VDS_BLK = 110b | 8.4 | 10 | 11.9 | |||
| VDS_BLK = 111b | 10.1 | 12 | 13.9 | |||
| VSENSE_LVL | VSENSE overcurrent threshold | SNS_OCP_LVL = 000b : Input common mode voltage +/-2V | 34 | 50 | 64 | mV |
| SNS_OCP_LVL = 001b : Input common mode voltage +/-2V | 60 | 75 | 87 | |||
| SNS_OCP_LVL = 010b : Input common mode voltage +/-2V | 84 | 100 | 112 | |||
| SNS_OCP_LVL = 011b : Input common mode voltage +/-2V | 110 | 125 | 138 | |||
| SNS_OCP_LVL = 100b : Input common mode voltage +/-2V | 134 | 150 | 165 | |||
| SNS_OCP_LVL = 101b : Input common mode voltage +/-2V | 183 | 200 | 214 | |||
| SNS_OCP_LVL = 110b : Input common mode voltage +/-2V | 280 | 300 | 320 | |||
| SNS_OCP_LVL = 111b : Input common mode voltage +/-2V | 474 | 500 | 525 | |||
| tSENSE_DG | VSENSE overcurrent deglitch time | SNS_OCP_DG = 00b | 1.5 | 2.0 | 2.5 | µs |
| SNS_OCP_DG = 01b | 3.0 | 4.0 | 5.0 | |||
| SNS_OCP_DG = 10b | 4.5 | 6.0 | 7.5 | |||
| SNS_OCP_DG = 11b | 8 | 10.0 | 12 | |||
| IPHD_SRC | Phase diagnostic source current | Source current of SHx; PHDEN_Hx = 1b; VGVDD ≥ 8V, VDRAIN ≥ 4.5V. VDRAIN - SHx = 4V | 4.3 | 7.3 | 12 | mA |
| IPHD_SINK | Phase diagnostic sink current | Sink current of SHx; PHDEN_Lx = 1b; VGVDD ≥ 8V, VDRAIN ≥ 4.5V. SHx-GND = 4V | 4.0 | 4.8 | 5.5 | |
| VPHC_H | Phase comparator high level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 0b | 0.6 | 0.75 | 0.9 | V/V |
| VPHC_H | Phase comparator high level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 1b | 0.37 | 0.52 | 0.67 | V/V |
| VPHC_L | Phase comparator low level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 0b | 0.10 | 0.25 | 0.40 | V/V |
| VPHC_L | Phase comparator low level threshold over VDRAIN (This is a ratio to VDRAIN voltage) | PHC_THR = 1b | 0.33 | 0.48 | 0.63 | V/V |
| tPHC_PD_HL | Phase comparator propagation delay | Propagation delay of phase comparator High to Low from SHx to PHCx, Cload=20pF; SHx input test condition 60V – 0V , From SHx = 88% to 15% of VDRAIN | 1.5 | µs | ||
| tPHC_PD_LH | Phase comparator propagation delay | Propagation delay of phase comparator Low to High from SHx to PHCx, Cload=20pF; SHx input test condition 0V – 60V From SHx = 15% to 88% of VDRAIN | 1.5 | µs | ||
| tPHC_OUT_DEG | Phase comparator output deglitch time | PHCOUT_DG_SEL = 1 | 0.8 | 1.0 | 1.4 | µs |
| TOTW | Thermal warning temperature | TJ rising, OT_LVL = 0b; | 125 | 150 | °C | |
| TOTW | Thermal warning temperature (Grade0 | TJ rising, OT_LVL = 1b; | 150 | 175 | °C | |
| TOTW_HYS | Thermal warning hysteresis | 15 | 22 | 25 | °C | |
| tOTW_DEG | Thermal warning deglitch | 8 | 12 | 16 | µs | |
| TOTSD | Thermal shutdown temperature | TJ rising; OT_LVL = 0b | 155 | 180 | °C | |
| Thermal shutdown temperature (Grade 0 device) | TJ rising; OT_LVL = 1b; | 180 | 205 | °C | ||
| TOTSD_HYS | Thermal shutdown hysteresis | 16 | 23 | 27 | °C | |
| tOTSD_DEG | Thermal shutdown deglitch | 8 | 12 | 16 | µs | |
| tDRVN_SD | Gate Drive Shutdown Sequence time | 20 | µs | |||