SLVSHC8 May   2023 DRV8334-Q1

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Pin Functions 48-Pin DRV8334-Q1
  6. Specification
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 SPI Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Three BLDC Gate Drivers
        1. 6.3.1.1 PWM Control Modes
          1. 6.3.1.1.1 6x PWM Mode
          2. 6.3.1.1.2 3x PWM Mode with INLx enable control
          3. 6.3.1.1.3 3x PWM Mode with SPI enable control
          4. 6.3.1.1.4 1x PWM Mode
          5. 6.3.1.1.5 SPI Gate Drive Mode
        2. 6.3.1.2 Gate Drive Architecture
          1. 6.3.1.2.1 Bootstrap diode
          2. 6.3.1.2.2 GVDD Charge pump/LDO
          3. 6.3.1.2.3 VCP Trickle Charge pump
          4. 6.3.1.2.4 Gate Driver Output
          5. 6.3.1.2.5 Passive and Semi-active pull-down resistor
          6. 6.3.1.2.6 TDRIVE Gate Drive Timing Control
          7. 6.3.1.2.7 Propagation Delay
          8. 6.3.1.2.8 Deadtime and Cross-Conduction Prevention
      2. 6.3.2 Low-Side Current Sense Amplifiers
        1. 6.3.2.1 Unidirectional Current Sense Operation
        2. 6.3.2.2 Bidirectional Current Sense Operation
      3. 6.3.3 Gate Driver Shutdown
        1. 6.3.3.1 DRVOFF Gate Driver Shutdown
        2. 6.3.3.2 Gate Driver Shutdown Timing Sequence
      4. 6.3.4 Gate Driver Protective Circuits
        1. 6.3.4.1  PVDD Supply Undervoltage Warning (PVDD_UVW)
        2. 6.3.4.2  PVDD Supply Undervoltage Lockout (PVDD_UV)
        3. 6.3.4.3  PVDD Supply Overvoltage Fault (PVDD_OV)
        4. 6.3.4.4  GVDD Undervoltage Lockout (GVDD_UV)
        5. 6.3.4.5  GVDD Overvoltage Fault (GVDD_OV)
        6. 6.3.4.6  BST Undervoltage Lockout (BST_UV)
        7. 6.3.4.7  BST Overvoltage Fault (BST_OV)
        8. 6.3.4.8  VCP Undervoltage Fault (CP_OV)
        9. 6.3.4.9  VCP Overvoltage Fault (CP_OV)
        10. 6.3.4.10 VDRAIN Undervoltage Fault (VDRAIN_UV)
        11. 6.3.4.11 VDRAIN Overvoltage Fault (VDRAIN_OV)
        12. 6.3.4.12 MOSFET VGS Monitoring Protection
        13. 6.3.4.13 MOSFET VDS Overcurrent Protection (VDS_OCP)
        14. 6.3.4.14 VSENSE Overcurrent Protection (SEN_OCP)
        15. 6.3.4.15 Phase Comparators
        16. 6.3.4.16 Thermal Shutdown (OTSD)
        17. 6.3.4.17 Thermal Warning (OTW)
        18. 6.3.4.18 OTP CRC
        19. 6.3.4.19 SPI Watchdog Timer
        20. 6.3.4.20 Phase Diagnostic
    4. 6.4 Device Functional Modes
      1. 6.4.1 Gate Driver Functional Modes
        1. 6.4.1.1 Sleep Mode
        2. 6.4.1.2 Operating Mode
      2. 6.4.2 Device Power Up Sequence
    5. 6.5 Programming
      1. 6.5.1 SPI
      2. 6.5.2 SPI Format
      3. 6.5.3 SPI Format Diagrams
  8. Register Maps
    1. 7.1 STATUS Registers
    2. 7.2 CONTROL Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application with 48-pin package
        1. 8.2.1.1 External Components
      2. 8.2.2 Application Curves
    3. 8.3 Layout
      1. 8.3.1 Layout Guidelines
      2. 8.3.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Community Resources
    4. 9.4 Trademarks
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Electrical Characteristics

4.5 V ≤ VPVDD ≤ 60 V, –40°C ≤ TJ ≤   (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLIES (PVDD)
IPVDDQ PVDD sleep mode current VPVDD = 12 V, nSLEEP = 0, TA = 25°C,  IPVDDQ = PVDD + VDRAIN


7 10 µA
IPVDDQ PVDD sleep mode current VPVDD = 24 V, nSLEEP = 0, TA = 25°C,  IPVDDQ = PVDD + VDRAIN
8 12 µA
IPVDDQ PVDD sleep mode current VPVDD = < 36V, nSLEEP = 0,  IPVDDQ = PVDD + VDRAIN
9 30 µA
IPVDD PVDD active mode current VPVDD = 24 V,  nSLEEP = HIGH, INHx = INLX = Low. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 24 V

25 38 mA
IPVDD PVDD active mode current VPVDD = 60 V,  nSLEEP = HIGH, INHx = INLX = Low. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 60 V, VCP_MODE = 00b, 01b, 11b
 
26 40 mA
IPVDD PVDD active mode current VPVDD = 24 V, nSLEEP = HIGH, INHx = INLX = Switching@20kHz, No FETs connected,  IPVDD = PVDD + VDRAIN


25 38 mA
IPVDD PVDD active mode current VPVDD = 60 V,  nSLEEP = HIGH, INHx = INLX = Switching@20kHz. No FETs connected, IPVDD = PVDD + VDRAIN, VDRAIN = 60 V, VCP_MODE = 00b, 01b, 11b  26 40 mA
tWAKE Turn-on time nSLEEP = Low to High; nFAULT goes High.

 
1 5 ms
LOGIC-LEVEL INPUTS (INHx, INLx, nSLEEP etc)
VIL Input logic low voltage 0.8 V
VIH Input logic high voltage 2.1 V
VHYS Input hysteresis 200 330 450 mV
VIL DRVOFF input logic low voltage DRVOFF

 
0.8 V
VIH DRVOFF input logic high voltage DRVOFF 2.1 V
VHYS DRVOFF input hysteresis DRVOFF 190 350 600 mV
RPD Input pulldown resistance To GND; INHx, INLx, SCLK, SDI 50 100 150
RPD Input pulldown resistance nSLEEP, DRVOFF 460 800 1700
IIL Input logic low current VI = 0 V; nSCS (internal pull up); VIO = 3.3V 11 33 66 µA
IIL Input logic low current VI = 0 V; nSCS (internal pull up); VIO = 5V 25 50 100 µA
IIH Input logic high current VI = 5 V, INHx/INLx/SDI/SCLK 30 50 70 µA
VIH nSleep input logic high voltage 2.1 V
VIL nSleep input logic low voltage 0.8 V
VHYST nSleep input logic hysteresis 0.1 V
LOGIC-LEVEL OUTPUTS (nFAULT, SDO, PHCx)
VOL Output logic low voltage IDOUT = 1 mA, PHCOMP 0.5 V
VOL Output logic low voltage IDOUT = 1 mA, SDO 0.5 V
VOH Output logic high voltage IDOUT = 1 mA, SDO, 3.3V mode 2.7 3.3 3.6 V
VOH Output logic high voltage IDOUT = 1 mA, PHCOMP, 5V mode; VPVDD  ≥ 4.5V 4.0 5 5.5 V
VOH Output logic high voltage IDOUT = 1 mA, SDO, 5V mode; VPVDD  ≥ 4.5V 4.0 5 5.5 V
VOH Output logic high voltage IDOUT = 1 mA, SDO, 5V mode; 4V ≤VPVDD  < 4.5V 3.6 3.8 4.5 V
IOZ Output logic high current nFAULT : Force nFAULT = 5 V, no fault event, nSLEEP = High
SDO : Force VSDO = 5V, nSCS = High or nSLEEP = Low
–12 25 µA
IOZ Output logic high current SDO : Force VSDO = 0V, nSCS = High or nSLEEP = Low –12 10 µA
CHARGE PUMP (GVDD, VCP)
VGVDD GVDD Gate driver regulator voltage (LDO mode) 22 V ≤VPVDD ; IGS  ≤50 mA 11.5 13.5 V
18 V ≤VPVDD ≤ 22 V; IGS  ≤ 50 mA 11.5 13.5 V
GVDD Gate driver regulator voltage (Charge pump mode) 7.2 V ≤VPVDD ≤ 18 V; IGS = 50 mA ; IVCP = 5mV 11.5 13.5 V
6.5 V ≤VPVDD ≤ 7.2 V; IGS ≤ 20 mA; IVCP = 3mA 
11.5 13.5 V
5 V ≤VPVDD ≤ 6.5 V; IGS ≤ 20 mA; IVCP = 3mA
9 13 V
4.5 V ≤VPVDD ≤ 5 V; IGS ≤ 20 mA, IVCP = 3mA;
8 10 V
VVCP VCP charge pump voltage (with respect to VDRAIN) VVCP = V(VCP - VDRAIN; 13.5 ≥  GVDD ≥ 11 V; VDRAIN > 4.5V; IVCP  5 mA; 

9.5 13.5 V
VVCP = V(VCP - VDRAIN) ; 9V ≤ GVDD  < 11V;  VDRAIN > 4.5V; IVCP = 3 mA; 

8.3 11
VVCP = V(VCP - VDRAIN) ; 8V ≤ GVDD < 9V;  VDRAIN > 4.5V; IVCP = 3 mA; 

7.36 9
tBST_PRECHG VCP charge pump bootstrap cap pre-charge time VBST-SHX = 5V ;INHx = INLx = Low. Tj = 150C, IVCP = 3mA; CVCP = 1.5uF; CBST = 1.5uF (each phase), CVCP_FLY = 1uF;   VPVDD = 4.5V
1.7 3 ms
VBST_TCPOFF BST monitor voltage for VCP to stop charging the BST cap (rising voltage) INLx = 0; SHx = 0, VDRAIN; VDRAIN =  PVDD = 12V, 60V; 12.0 13.2 14.6 V
BOOTSTRAP DIODES
VBOOTD Bootstrap diode forward voltage IBOOT = 100 µA  0.55 0.85 V
IBOOT = 10 mA  0.85 1.1
VBOOTD Bootstrap diode forward voltage IBOOT = 100 mA.TJ < 150℃   1.6 V
RBOOTD Bootstrap dynamic resistance (ΔVBOOTD/ΔIBOOT) IBOOT = 100 mA and 50 mA. TJ < 150C  6.6 9.1
GATE DRIVERS (GHx, GLx, SHx, SLx)
VGL_L Low-side Low-level output voltage IGLx = 10mA, GLx - SLx; IDRVN = 100100b: IHOLD_SEL = 0b; VGVDD = 12V;  0 0.2 V
VGL_H Low-side High-level output voltage IGLx = 10mA, GVDD - GLx ;  IDRVP = 100100b ; IHOLD_SEL = 0b;  VGVDD = 12V;  0 0.2 V
VGH_L High-side Low-level output voltage IGHx = 10mA, GHx - SHx; IDRVN = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V;  0 0.2 V
VGH_H High-side High-level output voltage IGHx = 10mA, BSTx - GHx; IDRVP = 100100b ; IHOLD_SEL = 0b; VGVDD = 12V;  0 0.2 V
RPDSA_LS Low side semi active pull down resistor GLx to SLx; nSLEEP = Low, VGLx - VSLx = 2V, GVDD (BSTx-SHx) > 2V 2 3 4.3 kΩ
RPDSA_HS High side semi active pull down resistor GHx to SHx; nSLEEP = Low, VGHx - VSHx = 2V, GVDD (BSTx-SHx) > 2V 7 9 12 kΩ
IDRVN Peak sink gate current IDRVN=000000b; VGSx = 5V; BST-SHx = GVDD = 12V 0.85 mA
IDRVN=000001b; VGSx = 5V; BST-SHx = GVDD = 12V 1.2
IDRVN=000010b; VGSx = 5V; BST-SHx = GVDD = 12V 1.6
IDRVN=000011b; VGSx = 5V; BST-SHx = GVDD = 12V 2.0
IDRVN=000100b; VGSx = 5V; BST-SHx = GVDD = 12V 2.4
IDRVN=000101b; VGSx = 5V; BST-SHx = GVDD = 12V 3.0
IDRVN=000110b; VGSx = 5V; BST-SHx = GVDD = 12V 3.6
IDRVN=000111b; VGSx = 5V; BST-SHx = GVDD = 12V 4.2
IDRVN=001000b; VGSx = 5V; BST-SHx = GVDD = 12V 4.7
IDRVN=001001b; VGSx = 5V; BST-SHx = GVDD = 12V 5.7
IDRVN=001010b; VGSx = 5V; BST-SHx = GVDD = 12V 6.7
IDRVN=001011b; VGSx = 5V; BST-SHx = GVDD = 12V 7.8
IDRVN=001100b; VGSx = 5V; BST-SHx = GVDD = 12V 8.8
IDRVN=001101b; VGSx = 5V; BST-SHx = GVDD = 12V 10
IDRVN=001110b; VGSx = 5V; BST-SHx = GVDD = 12V 11.5
IDRVN=001111b; VGSx = 5V; BST-SHx = GVDD = 12V 13
IDRVN=010000b; VGSx = 5V; BST-SHx = GVDD = 12V 14
IDRVN=010001b; VGSx = 5V; BST-SHx = GVDD = 12V 17
IDRVN=010010b; VGSx = 5V; BST-SHx = GVDD = 12V 19
IDRVN=010011b; VGSx = 5V; BST-SHx = GVDD = 12V 26
IDRVN=010100b; VGSx = 5V; BST-SHx = GVDD = 12V 29
IDRVN=010101b; VGSx = 5V; BST-SHx = GVDD = 12V 32
IDRVN Peak sink gate current IDRVN=010110b; VGSx = 5V; BST-SHx = GVDD = 12V 37 mA
IDRVN=010111b; VGSx = 5V; BST-SHx = GVDD = 12V 43
IDRVN=011000b; VGSx = 5V; BST-SHx = GVDD = 12V 49
IDRVN=011001b; VGSx = 5V; BST-SHx = GVDD = 12V 58
IDRVN=011010b; VGSx = 5V; BST-SHx = GVDD = 12V 77
IDRVN=011011b; VGSx = 5V; BST-SHx = GVDD = 12V

92
IDRVN=011100b; VGSx = 5V; BST-SHx = GVDD = 12V

100
IDRVN=011101b; VGSx = 5V; BST-SHx = GVDD = 12V 120
IDRVN=011110b; VGSx = 5V; BST-SHx = GVDD = 12V 140
IDRVN=011111b; VGSx = 5V; BST-SHx = GVDD = 12V 155
IDRVN=100000b; VGSx = 5V; BST-SHx = GVDD = 12V 175
IDRVN=100001b; VGSx = 5V; BST-SHx = GVDD = 12V 210
IDRVN=100010b; VGSx = 5V; BST-SHx = GVDD = 12V 240
IDRVN=100011b; VGSx = 5V; BST-SHx = GVDD = 12V 270
IDRVP Peak source gate current  IDRV_CFG = 0b; IDRV_RATIO = 00b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V
 
1*IDRVN mA
IDRV_CFG = 0b; IDRV_RATIO = 01b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V
  
0.75*IDRVN mA
IDRV_CFG = 0b; IDRV_RATIO = 10b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V
 
0.5*IDRVN mA
IDRV_CFG = 0b; IDRV_RATIO = 11b; IDRVN = 00000b to 100011b ; VGSx = 5V; BST-SHx = GVDD = 12V
 
0.25*IDRVN mA
IDRVN_VAR Peak sink gate current variation IDRVN=000000b - 010011b, with respect to TYP -55 +55 %
IDRVN=010011b - 100011b, with respect to TYP -45 +45 %
IDRVN Peak sink gate current - switch mode  IDRVN=100100b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 370 600 980 mA
IDRVN=100101b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 440 700 1050 mA
IDRVN=100110b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 500 795 1250 mA
IDRVN=100111b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 580 910 1365 mA
IDRVN=101000b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 720 1090 1600 mA
IDRVN=101001b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 820 1255 1820 mA
IDRVN=101010b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 910 1455 2200 mA
IDRVN=101011b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 1000 1685 2500 mA
IDRVN=101100b; VGSx (GHx-SHx, GLx-SLx) = 12V;  BST-SHx = GVDD = 12V. SGD_TMP_EN = 1b 1080 2000 2600 mA

IDRVP
 
Peak source gate current - switch mode   IDRVP=100100b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 160 300 450 mA
IDRVP=100101b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 160 320 480 mA
IDRVP=100110b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 200 380 570 mA
IDRVP=100111b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 215 430 645 mA
IDRVP=101000b;VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 250 500 750 mA
IDRVP=101001b;VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 300 600 850 mA
IDRVP=101010b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 360 700 970 mA
IDRVP=101011b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 400 800 1150 mA
IDRVP=101100b; VGSx (GHx-SHx, GLx-SLx) = 0V; GVDD = 12V 500 1000 1300 mA
IHOLD_PU Gate pull up hold current  IHOLD_SEL = 1b; BST-SHx = GVDD = 12V. 150 250 400 mA
IHOLD_PU Gate pull up hold current  IHOLD_SEL = 0b; BST-SHx = GVDD = 12V. 330 560 900 mA
IHOLD_PD Gate pull down hold current  IHOLD_SEL = 1b; BST-SHx = GVDD = 12V. 140 267 480 mA
IHOLD_PD Gate pull down hold current  IHOLD_SEL = 0b; BST-SHx = GVDD = 12V. 580 1100 1500 mA
ISTRONG Gate pull down strong current  GHx-SHx = 12V (High side) or GLx = 12V (Low Side); BST-SHx = GVDD = 12V. 1000 2000 2800 mA
GATE DRIVER TIMINGS (GHx, GLx)
tPD Input to output propagation delay GHx/GLx falling
INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b ; After INHx/INLx falling edge to VGS = VGHS/VGLS – 1 V; VGVDD = VBSTx-SHx  ≥ 8V
90 150 ns
tPD Input to output propagation delay GHx/GLx falling
INHx, INLx to GHx, GLx. IDRVN = IDRVP = 011101b ; After INHx/INLx falling edge to VGS = VGHS/VGLS – 1 V; VGVDD = VBSTx-SHx  ≥ 8V
110 150 ns
tPD Input to output propagation delay GHx/GLx rising
INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V
90 152 ns
tPD Input to output propagation delay GHx/GLx rising
INHx, INLx to GHx, GLx.IDRVN = IDRVP = 011101b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V
100 150 ns
tPD Input to output propagation delay GHx/GLx rising Rev2p0 new
DRV_BIAS_MODE = 01b
INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V
60 170 ns
tPD Input to output propagation delay GHx/GLx rising Rev2p0 new
DRV_BIAS_MODE = 10b, 11b
INHx, INLx to GHx, GLx. IDRVN = IDRVP = 101000b; After INHx/INLx rising edge to VGS = 1 V; VGVDD = VBSTx-SHx ≥ 8V
100 220 ns
tPD_match Matching propagation delay per phase GHx turning OFF to GLx turning ON, GLx turning OFF to GHx turning ON; VGVDD = VBSTx-SHx ≥ 8V –150 10 150 ns
tPD_match Matching propagation delay phase to phase GHx/GLx turning ON to GHy/GLy turning ON, GHx/GLx turning OFF to GHy/GLy turning OFF; VGVDD = VBSTx-SHx ≥ 8V –50 10 50 ns
tDRIVE Peak current gate drive time  Typical value.TDRVP (TDRVN) = 0000b - 1111b. Refer to register map TDRNP and TDRVN. 140 3821 ns
tDRIVE_V Peak current gate drive time variation With respect to typical value.TDRVP (TDRVN) = 0000b - 1111b -20 20 %
tDEAD Digital Gate drive dead time  DEADTIME = 000b; 30 70 130 ns
DEADTIME = 001b; 170 214 300 ns
DEADTIME = 010b 230 286 380 ns
DEADTIME = 011b 420 500 640 ns
DEADTIME = 100b 640 750 930 ns
DEADTIME = 101b 880 1000 1280 ns
DEADTIME = 110b 1270 1500 1820 ns
DEADTIME = 111b 1700 2000 2400 ns
CURRENT SHUNT AMPLIFIERS (SNx, SOx, SPx, VREF)
ACSA Sense amplifier gain CSAGAIN = 0000b 5 V/V
CSAGAIN = 0001b; 10 V/V
CSAGAIN = 0010b 12 V/V
CSAGAIN = 0011b 16 V/V
CSAGAIN = 0100b 20 V/V
CSAGAIN = 0101b 23 V/V
CSAGAIN = 0110b 25 V/V
CSAGAIN = 0111b 30 V/V
CSAGAIN = 1000b 40 V/V
EACSA Sense amplifier gain error All CSAGAIN setting 
VGVDD > 7.2V (this GVDD condition is applied to all CSA items)
-0.55 0.55 %
tSET Settling time to ±1% VSTEP = 1.6 V, ACSA = 5 V/V, RSO = 160Ω, CSO = 470pF ; VREF = 5V/3V
0.6 1.6 µs
tSET Settling time to ±1% VSTEP = 1.6 V, ACSA = 10 V/V, CLOAD = 470pF 
0.65 1.5 µs
tSET Settling time to ±1% VSTEP = 1.6 V, ACSA = 20 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V/3V
0.7 1.55 µs
tSET Settling time to ±1% VSTEP = 1.6 V, ACSA = 30 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V 0.7 1.5 µs
tSET Settling time to ±1% VSTEP = 1.6 V, ACSA = 30 V/V, RSO = 160Ω, CSO = 470pF VREF = 3V 0.7 1.6 µs
tSET Settling time to ±1% VSTEP = 1.6 V, ACSA = 40 V/V, RSO = 160Ω, CSO = 470pF VREF = 5V 0.7 1.7 µs
tSET Settling time to ±1% VSTEP = 1.6 V, ACSA = 40 V/V, RSO = 160Ω, CSO = 470pF VREF = 3V 0.7 1.75 µs
UGB Unity Gain Bandwidth CLOAD = 470pF; closed loop, BW @ unity gain

10 MHz
BW Bandwidth closed loop, -3db, no output load 1 MHz
VSWING Output voltage range VVREF = 3 to 5.5 V 

0.25 VVREF - 0.25 V
VCOM Common-mode input range VCOM = (VSP + VSN) / 2 -2 2 V
tcom_rec Common-mode transient recovery timing VCOM = -15V to 0V

2.9 µs
VDIFF Differential-mode input range -0.3 0.3 V
VOFF Input offset voltage total VSP = VSN = GND; CSAGAIN = 0000b (Gain 5)
Initial offset + Offset drift,  Gain = 5

 
–0.6 0.5 mV
VOFF Input offset voltage total VSP = VSN = GND; CSAGAIN = 0001b - 1000b (Gain 10 - Gain 40)
Initial offset + Offset drift

 
–0.5 0.5 mV
VOFF_DRIFT Input drift offset voltage VSP = VSN = GND; temperature drift + aging
 
±0.1 mV
IBIAS Input bias current VSP = VSN = GND.  CSA and SENSE_OCP total  20 100 µA
IBIAS_OFF Input bias current offset  ISP – ISN. CSA and SENSE_OCP total  -1.5 1.5 µA
IVREF Reference input current VCSAREF = 3.3 V 3 6 9.25 mA
VCSAREF = 5 V 4 7 9.5 mA
CMRR DC Common-mode rejection ratio SN/SP = -2V to 2V 60 90 dB
CMRR Transient Common-mode rejection ratio 20KHz 60 90 dB
PSRR Power-supply rejection ratio 100 dB
tCSAAZ_INIT Initial CSA Auto Zero  From CSA_EN = 1b to the end of initial CSA Auto Zero function

26 32 38 µS
tCSAAZ_MIN CSA Auto Zero  TimeOut Period CSA_EN = 1b. INHx and INLx toggling.

170 µS
tCSAAZ_MAX CSA Auto Zero  TimeOut Period CSA_EN = 1b. INHx=INLx= low

260 µS
Temperature Reporting
SUPPLY VOLTAGE MONITORS
VPVDD_UV PVDD undervoltage lockout threshold VPVDD rising 4.5 4.65 4.8 V
VPVDD falling 4.05 4.2 4.35
VPVDD_UV_HYS PVDD undervoltage lockout hysteresis Rising to falling threshold 400 450 500 mV
tPVDD_UV_DG PVDD undervoltage deglitch time rising and falling edge 8 12 16 µs
VPVDD_UVW PVDD undervoltage warning threshold VPVDD rising; PVDD_UVW_LVL= 0b; 6.0 7 V
VPVDD falling; PVDD_ULW_LVL= 0b; 5.8 6.8 V
VPVDD rising; PVDD_UVW_LVL = 1b; 7.3 8.3 V
VPVDD falling; PVDD_UVW_LVL = 1b; 7.1 8.1 V
VPVDD_UVW_HYS PVDD undervoltage warning hysteresis Rising to falling threshold 140 200 260 mV
tPVDD_UVW_DG PVDD undervoltage warning deglitch time rising and falling edge 8 12 16 µs
VPVDD_OV PVDD overvoltage threshold VPVDD rising, PVDD_OV_LVL = 00b 28 31 V
VPVDD falling, PVDD_OV_LVL = 00b 27 30
VPVDD rising, PVDD_OV_LVL = 01b 33 36
VPVDD falling, PVDD_OV_LVL = 01b 32 35
VPVDD rising, PVDD_OV_LVL = 10b 50 55
VPVDD falling, PVDD_OV_LVL = 10b 47 52
VPVDD_OV_HYS PVDD overvoltage hysteresis Rising to falling threshold  PVDD_OV_LVL = 00b, 01b 0.6 0.9 1.2 V
VPVDD_OV_HYS PVDD overvoltage hysteresis Rising to falling threshold  PVDD_OV_LVL = 10b 2.0 2.2 2.4 V
tPVDD_OV_DG PVDD overvoltage deglitch time rising and falling edge 8 12 16 µs
VGVDD_UV GVDD undervoltage threshold VGVDD rising - after power up 7.0 7.8 V
VGVDD rising - power up only 7.5 8.1 V
VGVDD falling  6.8 7.6 V
VGVDD_UV_HYS GVDD undervoltage hysteresis Rising to falling threshold 185 215 245 mV
tGVDD_UV_DG GVDD undervoltage deglitch time rising and falling edge 8 12 16 µs
VGVDD_OV GVDD overvoltage threshold VGVDD rising 15 17 V
VGVDD falling 14.5 16.5
VGVDD_OV_HYS GVDD overvoltage hysteresis Rising to falling threshold 490 560 630 mV
tGVDD_OV_DG GVDD overvoltage deglitch time rising and falling edge 8 12 16 µs
VBST_UV Bootstrap undervoltage threshold VBSTx- VSHx; VBSTx rising; BST_UV_LVL = 1b 6.3 7.4 8.5 V
VBSTx- VSHx; VBSTx falling; BST_UV_LVL = 1b 6.1 7.2 8.3
VBST_UV Bootstrap undervoltage threshold VBSTx- VSHx; VBSTx rising; BST_UV_LVL = 0b 3.8 4.4 5 V
VBSTx- VSHx; VBSTx falling; BST_UV_LVL = 0b 3.60 4.2 4.8 V
VBST_UV_HYS Bootstrap undervoltage hysteresis Rising to falling threshold
BST_UV_LVL = 0b and 1b
120 200 280 mV
tBST_UV_DG Bootstrap undervoltage deglitch time rising and falling edge 4 6 8 µs
VBST_OV Bootstrap overvoltage threshold VBSTx- VSHx; VBSTx rising 15.2 18 V
VBSTx- VSHx; VBSTx falling 15 17.8
VBST_OV_HYS Bootstrap overvoltage hysteresis 110 200 260 mV
tBST_OV_DG Bootstrap overvoltage deglitch time rising and falling edge 8 12 16 µs
VCP_UV VCP undervoltage threshold VCP - VDRAIN; rising 6 6.7 7.36 V
VCP - VDRAIN; falling 5.9 6.6 7.25
tCP_UV_DG VCP undervoltage deglitch time rising and falling edge 8 12 16 µs
VCP_OV VCP overvoltage threshold VCP - VDRAIN; rising 14.1 17.1 V
VCP - VDRAIN; falling 13.8 16.7
tCP_OV_DG VCP overvoltage deglitch time rising and falling edge 8 12 16 µs
VDRAIN_UV VDRAIN undervoltage threshold VVDRAIN rising 4.25 4.35 4.45 V
VDRAIN_UV VDRAIN undervoltage threshold VVDRAIN falling 4.05 4.15 4.25 V
VDRAIN_UV_HYS VDRAIN undervoltage hysteresis 160 190 210 mV
tVDRAIN_UV_DG VDRAIN undervoltage deglitch time rising and falling edge 8 12 16 µs
VDRAIN_OV VDRAIN overvoltage threshold VVDRAIN rising, VDRAIN_OV_LVL = 00b 28 31 V
VVDRAIN falling, VDRAIN_OV_LVL = 00b 27 30 V
VVDRAIN rising, VDRAIN_OV_LVL = 01b 33 36 V
VVDRAIN falling, VDRAIN_OV_LVL = 01b 32 35 V
VVDRAIN rising, VDRAIN_OV_LVL = 10b, 11b 50 55 V
VVDRAIN falling, VDRAIN_OV_LVL = 10b, 11b 48 353 V
VDRAIN_OV_HYS VDRAIN overvoltage hysteresis Rising to falling threshold, VDRAIN_OV_LVL = 00b, 01b 0.7 1.0 1.3 V
VDRAIN_OV_HYS VDRAIN overvoltage hysteresis Rising to falling threshold, VDRAIN_OV_LVL = 10b, 11b 1.9 2.3 2.6 V
tVDRAIN_OV_DG VDRAIN overvoltage deglitch time rising and falling edge 8 12 16 µs
PROTECTION CIRCUITS
VGS_LVL_H Gate voltage monitor threshold VGHx – VSHx, VGLx – VSLx, INLx / INHx=H;  VGS_LVL = 1'b1
6.9 8.5 V
VGS_LVL_H Gate voltage monitor threshold VGHx – VSHx, VGLx – VSLx, INLx / INHx=H; VGS_LVL = 1'b0
5 6.3 V
VGS_LVL_L Gate voltage monitor threshold VGHx – VSHx, VGLx – VSLx, INLx / INHx=L 1.3 2 V
tGS_DG VGS gate voltage monitor deglitch time VGS_DG = 000b
0.3 0.6 0.8 µs
VGS_DG = 001b 0.6 1.0 1.3 µs
VGS_DG = 010b, 1.1 1.5 1.9 µs
VGS_DG = 011b, VGS_DG = 1xxb 1.6 2.0 2.5 µs
tGS_BLK VGS gate voltage monitor blanking time VGS_BLK = 000b 1.7 2.25 2.9 µs
VGS_BLK = 001b 2.4 3 3.6 µs
VGS_BLK = 010b 4.0 5 5.8 µs
VGS_BLK = 011b 5.9 7 8.2 µs
VGS_BLK = 100b, 101b, 110b, 111b 8.6 10 11.9 µs
VDS_LVL VDS overcurrent protection threshold VDS_LVL = 0000b; SLx = -0.2V to +2.0V. VDS_CM = 0b 0.036 0.06 0.085 V
VDS_LVL VDS overcurrent protection threshold VDS_LVL = 0001b; SLx = -0.2V to +2.0V. VDS_CM = 0b 0.059 0.08 0.11 V
VDS_LVL VDS overcurrent protection threshold VDS_LVL = 0010b; SLx = -0.2V to +2.0V. VDS_CM = 0b, 
 
0.064 0.10 0.13 V
VDS_LVL VDS overcurrent protection threshold VDS_LVL = 0011b; SLx = -0.3V to +2.0V. 0.082 0.12 0.16 V
VDS_LVL VDS overcurrent protection threshold VDS_LVL = 0100b; SLx = -0.3V to +2.0V. 0.13 0.16 0.20 V
VDS_LVL = 0101b; SLx = -0.3V to +2.0V. 0.2 0.24 0.29
VDS_LVL = 0110b; SLx = -0.3V to +2.0V. 0.27 0.32 0.385
VDS_LVL = 0111b; SLx = -0.3V to +2.0V. 0.34 0.4 0.47
VDS_LVL = 1000b; SLx = -0.3V to +2.0V. 0.44 0.5 0.58
VDS_LVL = 1001b; SLx = -0.3V to +2.0V. 0.59 0.67 0.77
VDS_LVL = 1010b; SLx = -0.3V to +2.0V. 0.75 0.83 0.96
VDS_LVL = 1011b; SLx = -0.3V to +2.0V. 0.90 1 1.15
VDS_LVL = 1100b; SLx = -0.3V to +2.0V. 1.12 1.27 1.43
VDS_LVL = 1101b; SLx = -0.3V to +2.0V. 1.35 1.53 1.71
VDS_LVL = 1110b;SLx = -0.3V to +2.0V. 1.57 1.78 1.99
VDS_LVL = 1111b;SLx = -0.3V to +2.0V. 1.79 2 2.27
tDS_CMP VDS comparator delay VDS (comparator input voltage) from 0V to max of VDS_LVL (comparator output rising),  delay time of internal comparator. 
 
0.5 1.0 µs
VDS (comparator input voltage) from VDRAIN to min of VDS_LVL (comparator output falling), delay time of internal comparator. 
 
1.0 1.6
tDS_DG VDS  overcurrent deglitch  VDS_DG = 000b
0.4 0.6 0.8 µs
VDS_DG = 001b 0.7 1 1.3
VDS_DG = 010b 1.2 1.5 2.0
VDS_DG = 011b 1.5 2 2.5
VDS_DG = 100b 3.3 4 4.8
VDS_DG = 101b 5.2 6 7.35
VDS_DG = 110b, 111b 6.8 8 9.2
tDS_BLK VDS  overcurrent blanking time VDS_BLK = 000b 0 0.2 µs
VDS_BLK = 001b 0.4 0.5 0.7
VDS_BLK = 010b 0.7 1 1.5
VDS_BLK = 011b 1.4 2 2.6
VDS_BLK = 100b 5.0 6 7.2
VDS_BLK = 101b 6.8 8 9.4
VDS_BLK = 110b 8.4 10 11.9
VDS_BLK = 111b 10.1 12 13.9
VSENSE_LVL VSENSE overcurrent  threshold SNS_OCP_LVL = 000b : Input common mode voltage +/-2V 34 50 64 mV
SNS_OCP_LVL = 001b : Input common mode voltage +/-2V 60 75 87
SNS_OCP_LVL = 010b : Input common mode voltage +/-2V 84 100 112
SNS_OCP_LVL = 011b : Input common mode voltage +/-2V 110 125 138
SNS_OCP_LVL = 100b : Input common mode voltage +/-2V 134 150 165
SNS_OCP_LVL = 101b : Input common mode voltage +/-2V 183 200 214
SNS_OCP_LVL = 110b : Input common mode voltage +/-2V 280 300 320
SNS_OCP_LVL = 111b : Input common mode voltage +/-2V 474 500 525
tSENSE_DG VSENSE overcurrent deglitch time SNS_OCP_DG = 00b 1.5 2.0 2.5 µs
SNS_OCP_DG = 01b 3.0 4.0 5.0
SNS_OCP_DG = 10b 4.5 6.0 7.5
SNS_OCP_DG = 11b 8 10.0 12
IPHD_SRC Phase diagnostic source current Source current of SHx; PHDEN_Hx = 1b; VGVDD ≥ 8V, VDRAIN ≥ 4.5V. VDRAIN - SHx = 4V 4.3 7.3 12 mA
IPHD_SINK Phase diagnostic sink current  Sink current of SHx; PHDEN_Lx = 1b; VGVDD ≥ 8V, VDRAIN ≥ 4.5V. SHx-GND = 4V 4.0 4.8 5.5
VPHC_H Phase comparator high level threshold over VDRAIN (This is a ratio to VDRAIN voltage) PHC_THR = 0b 0.6 0.75 0.9 V/V
VPHC_H Phase comparator high level threshold over VDRAIN (This is a ratio to VDRAIN voltage) PHC_THR = 1b 0.37 0.52 0.67 V/V
VPHC_L Phase comparator low level threshold over VDRAIN (This is a ratio to VDRAIN voltage) PHC_THR = 0b 0.10 0.25 0.40 V/V
VPHC_L Phase comparator low level threshold over VDRAIN (This is a ratio to VDRAIN voltage) PHC_THR = 1b 0.33 0.48 0.63 V/V
tPHC_PD_HL Phase comparator propagation delay Propagation delay of phase comparator High to Low from SHx to PHCx, Cload=20pF; SHx input test condition 60V – 0V , From SHx = 88% to 15% of VDRAIN 1.5 µs
tPHC_PD_LH Phase comparator propagation delay Propagation delay of phase comparator Low to High from SHx to PHCx, Cload=20pF; SHx input test condition 0V – 60V From SHx = 15% to 88% of VDRAIN 1.5 µs
tPHC_OUT_DEG Phase comparator output deglitch time PHCOUT_DG_SEL = 1 0.8 1.0 1.4 µs
TOTW Thermal warning temperature TJ rising, OT_LVL = 0b; 125 150 °C
TOTW Thermal warning temperature (Grade0 TJ rising, OT_LVL = 1b; 150 175 °C
TOTW_HYS Thermal warning hysteresis 15 22 25 °C
tOTW_DEG Thermal warning deglitch 8 12 16 µs
TOTSD Thermal shutdown temperature TJ rising;  OT_LVL = 0b 155 180 °C
Thermal shutdown temperature (Grade 0 device) TJ rising; OT_LVL = 1b; 180 205 °C
TOTSD_HYS Thermal shutdown hysteresis 16 23 27 °C
tOTSD_DEG Thermal shutdown deglitch 8 12 16 µs
tDRVN_SD Gate Drive Shutdown Sequence time 20 µs