SNVS983C April   2024  – November 2025 TPS7H4011-SEP , TPS7H4011-SP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Device Options Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Electrical Characteristics - Ceramic (CFP) Package
    7. 7.7 Electrical Characteristics - Plastic (HTSSOP) Package
    8. 7.8 Quality Conformance Inspection
    9. 7.9 Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  VIN and Power VIN Pins (VIN and PVIN)
      2. 9.3.2  Voltage Reference
      3. 9.3.3  Remote Sensing and Setting VOUT
        1. 9.3.3.1 Minimum Output Voltage
        2. 9.3.3.2 Maximum Output Voltage
      4. 9.3.4  Enable
      5. 9.3.5  Fault Input (FAULT)
      6. 9.3.6  Power Good (PWRGD)
      7. 9.3.7  Adjustable Switching Frequency and Synchronization
        1. 9.3.7.1 Internal Clock Mode
        2. 9.3.7.2 External Clock Mode
        3. 9.3.7.3 Primary-Secondary Synchronization
      8. 9.3.8  Turn-On Behavior
        1. 9.3.8.1 Soft-Start (SS_TR)
        2. 9.3.8.2 Safe Start-Up Into Prebiased Outputs
        3. 9.3.8.3 Tracking and Sequencing
      9. 9.3.9  Protection Modes
        1. 9.3.9.1 Overcurrent Protection
          1. 9.3.9.1.1 High-Side 1 Overcurrent Protection (HS1)
          2. 9.3.9.1.2 High-Side 2 Overcurrent Protection (HS2)
          3. 9.3.9.1.3 COMP Shutdown
          4. 9.3.9.1.4 Low-Side Overcurrent Sinking Protection
        2. 9.3.9.2 Output Overvoltage Protection (OVP)
        3. 9.3.9.3 Thermal Shutdown
      10. 9.3.10 Error Amplifier and Loop Response
        1. 9.3.10.1 Error Amplifier
        2. 9.3.10.2 Power Stage Transconductance
        3. 9.3.10.3 Slope Compensation
        4. 9.3.10.4 Frequency Compensation
    4. 9.4 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1  Operating Frequency
        2. 10.2.2.2  Output Inductor Selection
        3. 10.2.2.3  Output Capacitor Selection
        4. 10.2.2.4  Input Capacitor Selection
        5. 10.2.2.5  Soft-Start Capacitor Selection
        6. 10.2.2.6  Rising VIN Set Point (Configurable UVLO)
        7. 10.2.2.7  Output Voltage Feedback Resistor Selection
        8. 10.2.2.8  Output Voltage Accuracy
        9. 10.2.2.9  Slope Compensation Requirements
        10. 10.2.2.10 Compensation Component Selection
        11. 10.2.2.11 Schottky Diode
      3. 10.2.3 Application Curve
      4. 10.2.4 Parallel Operation Compensation
      5. 10.2.5 Inverting Buck-Boost
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Mechanical Data

Fault Input (FAULT)

An input FAULT pin is provided to aid in fault management. When the applied voltage exceeds VFAULT(rising) (typically 0.6V) for longer than tFAULT(min) (maximum of 1.4μs), the device stops switching. The device remains in this fault state until the FAULT pin voltage is reduced below VFAULT(falling) (typically 0.5V). Once the fault state is removed, the TPS7H4011 waits tFAULT(delay) seconds (typically 31 switching periods). This delay gives the system time to clear the fault before resuming regulation with soft start.

Figure 9-3 shows an example of the FAULT pin being externally driven high. This can be from a system microcontroller or monitor.

TPS7H4011-SP TPS7H4011-SEP FAULT Pin Waveforms From
                    External Signal Figure 9-3 FAULT Pin Waveforms From External Signal

Figure 9-4 shows an example where FAULT is driven by a resistor divider from a monitored voltage (such as VIN or VOUT). By appropriately selecting the resistor divider, FAULT will be triggered when a voltage value is reached. Therefore, the FAULT pin can be configured to provide OVP (overvoltage protection).

TPS7H4011-SP TPS7H4011-SEP FAULT Pin Waveforms From
                    External Resistor Divider Figure 9-4 FAULT Pin Waveforms From External Resistor Divider