TIDUEY6 April   2021

 

  1.   Description
  2.   Resources
  3.   Features
  4.   Applications
  5.   5
  6. 1System Description
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 C2000 MCU F2838x
      2. 2.3.2 UCC5870-Q1 Gate Driver
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
      1. 3.1.1 Hardware Overview
        1. 3.1.1.1 Control Module
          1. 3.1.1.1.1 Control Mother Board
            1. 3.1.1.1.1.1 Inverter Safing - UCC5870 ASC and Fault Control
            2. 3.1.1.1.1.2 DC-DC Safing
            3. 3.1.1.1.1.3 DC-DC Converter Secondary PWM Selection
            4. 3.1.1.1.1.4 Blower Fan Control
            5. 3.1.1.1.1.5 Voltage Monitor
            6. 3.1.1.1.1.6 Resolver Interface Control
            7. 3.1.1.1.1.7 Test Points on Control Module
            8. 3.1.1.1.1.8 General Purpose Ports
            9. 3.1.1.1.1.9 Connectors and Headers on Control Mother Board
          2. 3.1.1.1.2 Power Supplies
            1. 3.1.1.1.2.1 Power Supply 5V /5A
            2. 3.1.1.1.2.2 Power Supply 12-V/1-A
            3. 3.1.1.1.2.3 Power Supply 15-V/0.5-A
          3. 3.1.1.1.3 TCAN4550 module
          4. 3.1.1.1.4 Dual TCAN Module
          5. 3.1.1.1.5 Analog Back End Module
          6. 3.1.1.1.6 Resolver Analog Front End Module
        2. 3.1.1.2 Inverter Module
          1. 3.1.1.2.1 Inverter Mother Board
            1. 3.1.1.2.1.1 Connectors and Headers on Inverter Mother Board
            2. 3.1.1.2.1.2 Jumper and Test Points on Inverter Module
          2. 3.1.1.2.2 Inverter Gate Driver Module
            1. 3.1.1.2.2.1 Inverter Gate Drive Power Supply Module
          3. 3.1.1.2.3 Inverter Current Sense Module
          4. 3.1.1.2.4 Inverter Voltage Sense Module
        3. 3.1.1.3 DC-DC Bidirectional Converter Module
          1. 3.1.1.3.1 DC-DC Converter Mother Board
          2. 3.1.1.3.2 DC-DC Gate Driver Module
    2. 3.2 Resource Mapping
    3. 3.3 Test Setup
    4. 3.4 Test Results
  9. 4General Texas Instruments High Voltage Evaluation (TI HV EVM) User Safety Guidelines
  10. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
    2. 5.2 Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  11. 6About the Author

About the Author

HAN ZHANG is Systems Engineer with the C2000 Automotive System Solutions team at Texas Instruments since 2019, primarily working on reference solution development and customer support on HEV/EV powertrain systems and functional safety. Before joining the systems team, Han worked at C2000 functional safety team, supporting device safety certification and C28x CPU self test library development. Before joining TI in 2018, Han received his Doctoral Degree in Electrical Engineering from Cleveland State University, Ohio in 2017, and his Bachelor of Engineering from Tsinghua University, China in 2010.

RAMESH RAMAMOORTHY is a senior systems engineer with the C2000 Systems group at Texas Instruments since 2011, primarily working on motor control applications and developing reference solutions in appliance, industrial servo and EV / HEV traction drive segments. In his previous jobs, Ramesh worked as motor drives R&D engineer developing then state of the art motor drive solutions and as applications engineer developing multiple reference designs for appliance market. He received his Master of Technology in Electrical Engineering from the Indian Institute of Technology, Chennai, India in 1993 and has been working on controlling various types of motors ever since.