TIDUF04A December   2022  – December 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1.     8
    2. 1.1 EV Charging Station Challenges
      1. 1.1.1 Efficient Relay and Contactor Drive
      2. 1.1.2 Contact Weld Detection
    3. 1.2 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Isolated AC/DC Power Supply Design
        1. 2.2.1.1  Input Bulk Capacitance and Minimum Bulk Voltage
        2. 2.2.1.2  Transformer Turns-Ratio, Primary Inductance, and Primary Peak Current
        3. 2.2.1.3  Transformer Parameter Calculations: Primary and Secondary RMS Currents
        4. 2.2.1.4  Main Switching Power MOSFET Selection
        5. 2.2.1.5  Rectifying Diode Selection
        6. 2.2.1.6  Output Capacitor Selection
        7. 2.2.1.7  Capacitance on VDD Pin
        8. 2.2.1.8  Open-loop Voltage Regulation Versus Pin Resistor Divider, Line Compensation Resistor
        9. 2.2.1.9  Feedback Elements
        10. 2.2.1.10 Backup Power Supply
        11. 2.2.1.11 Supercapacitor Selection
        12. 2.2.1.12 Supercapacitor Charger Design
      2. 2.2.2 Relay Drive and Weld Detect
    3. 2.3 Highlighted Products
      1. 2.3.1 UCC28742
      2. 2.3.2 DRV8220
      3. 2.3.3 ATL431
      4. 2.3.4 TL431
      5. 2.3.5 TPS55330
      6. 2.3.6 TPS259470
      7. 2.3.7 TL7705A
  9. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Requirements
      1. 3.2.1 Power Supply Test Setup
      2. 3.2.2 Weld Detect Test Setup
    3. 3.3 Test Results
      1. 3.3.1 Isolated AC/DC Power Supply Based on UCC28742
        1. 3.3.1.1 Efficiency and Output Voltage Cross Regulation
        2. 3.3.1.2 Output Voltage Ripple Waveforms
        3. 3.3.1.3 Start, Shutdown, Backup Power, and Transient Response Waveforms
        4. 3.3.1.4 Thermal Performance
      2. 3.3.2 DRV8220-Based Relay Drive
      3. 3.3.3 Isolated Line Voltage Sensing
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
    2. 4.2 Documentation Support
    3. 4.3 Support Resources
    4. 4.4 Trademarks
  11. 5About the Author
  12. 6Revision History

UCC28742

The UCC28742 is a flyback power-supply controller which provides high-performance voltage regulation using an optically coupled feedback signal from a secondary-side voltage regulator. The device provides accurate constant-current regulation using primary-side feedback. The controller operates in discontinuous-conduction mode (DCM) with valley-switching to minimize switching losses and allow for the use of low cost output rectifiers. The control law scheme combines frequency with primary peak-current amplitude modulation to provide high conversion efficiency across the load range. The control law provides a wide dynamic operating range of output power which allows the power-supply designer to achieve low standby power dissipation. During low-power operating conditions, the power-management features of the controller reduce the device operating current at switching frequencies below 25 kHz. At and above this frequency, the UCC28742 includes features in the modulator to reduce the EMI peak energy of the fundamental switching frequency and harmonics. A complete low-cost and low component-count system is realized using a straight-forward design process.