TIDUFE3 July   2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TPS7A03
      2. 2.3.2 REF35
      3. 2.3.3 TVS3301
      4. 2.3.4 OPA391
      5. 2.3.5 AFE881H1
      6. 2.3.6 AFE882H1
      7. 2.3.7 SN74LV8T165
      8. 2.3.8 TMUX1219
  9. 3System Design Theory
  10. 4Hardware, Software, Testing Requirements, and Test Results
    1. 4.1 Hardware Requirements
    2. 4.2 Test Setup
    3. 4.3 Test Results
      1. 4.3.1 Linearity Tests
        1. 4.3.1.1 Linearity Tests Summary
      2. 4.3.2 Noise Tests and Current Histogram
        1. 4.3.2.1 Noise Tests and Current Histogram Summary
      3. 4.3.3 Step Response
        1. 4.3.3.1 Step Response Summary
      4. 4.3.4 Start-Up
      5. 4.3.5 MCU Current
        1. 4.3.5.1 MCU Current Summary
      6. 4.3.6 System Currents
        1. 4.3.6.1 Summary of System Currents
  11. 5Design and Documentation Support
    1. 5.1 Design Files
      1. 5.1.1 Schematics
      2. 5.1.2 BOM
      3. 5.1.3 PCB Layout Recommendations
        1. 5.1.3.1 Layout Prints
    2. 5.2 Tools and Software
    3. 5.3 Documentation Support
    4. 5.4 Support Resources
    5. 5.5 Trademarks
  12. 6About the Author

Step Response

To test the step response of the circuit, the circuit is again connected to a 24V power supply. Current measurement is done with a current clamp with multiple turns of the loop wire in the clamp to increase the sensitivity.

The step is generated by sending the corresponding DAC values from a PC to the AFE88x. In this test a step from zero to maximum and back as well as midpoint current is performed. This shows the slew rates of the analog circuit and is also testing the stability.

Figure 4-27 shows the complete setup.

TIDA-010982 Test Setup for Step Response Measurements Figure 4-27 Test Setup for Step Response Measurements

The following figures show the step responses of the current.

TIDA-010982 AFE881: 3.3V, Rise Time 0 to 65535Figure 4-28 AFE881: 3.3V, Rise Time 0 to 65535
TIDA-010982 AFE881: 3.3V, Rise Time 0 to 32768Figure 4-30 AFE881: 3.3V, Rise Time 0 to 32768
TIDA-010982 AFE881: 1.8V, Rise Time 0
                        to 65535Figure 4-32 AFE881: 1.8V, Rise Time 0 to 65535
TIDA-010982 AFE881: 1.8V, Rise Time 0 to 32768Figure 4-34 AFE881: 1.8V, Rise Time 0 to 32768
TIDA-010982 AFE882: 3.3V, Rise Time 0 to 65535Figure 4-36 AFE882: 3.3V, Rise Time 0 to 65535
TIDA-010982 AFE882: 3.3V, Rise Time 0 to 32768Figure 4-38 AFE882: 3.3V, Rise Time 0 to 32768
TIDA-010982 AFE881: 3.3V, Fall Time 65535 to 0Figure 4-29 AFE881: 3.3V, Fall Time 65535 to 0
TIDA-010982 AFE881: 3.3V, Fall Time 32768 to 0Figure 4-31 AFE881: 3.3V, Fall Time 32768 to 0
TIDA-010982 AFE881: 1.8V, Fall Time 65535 to 0Figure 4-33 AFE881: 1.8V, Fall Time 65535 to 0
TIDA-010982 AFE881: 1.8V, Fall Time 32768 to 0Figure 4-35 AFE881: 1.8V, Fall Time 32768 to 0
TIDA-010982 AFE882: 3.3V, Fall Time 65535 to 0Figure 4-37 AFE882: 3.3V, Fall Time 65535 to 0
TIDA-010982 AFE882: 3.3V, Fall Time 32768 to 0Figure 4-39 AFE882: 3.3V, Fall Time 32768 to 0