SN74LVC2T45-EP

ACTIVE

Enhanced Product Dual-Bit Dual Supply Transceiver w/ Configurable Voltage Transl., 3-State Outputs

SN74LVC2T45-EP

ACTIVE

Product details

Technology family LVC Applications GPIO, I2S Bits (#) 2 High input voltage (min) (V) 1.08 High input voltage (max) (V) 5.5 Vout (min) (V) 1.65 Vout (max) (V) 5.5 Data rate (max) (Mbps) 420 IOH (max) (mA) -32 IOL (max) (mA) 32 Supply current (max) (µA) 4 Features Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
Technology family LVC Applications GPIO, I2S Bits (#) 2 High input voltage (min) (V) 1.08 High input voltage (max) (V) 5.5 Vout (min) (V) 1.65 Vout (max) (V) 5.5 Data rate (max) (Mbps) 420 IOH (max) (mA) -32 IOL (max) (mA) 32 Supply current (max) (µA) 4 Features Output enable, Overvoltage tolerant inputs, Partial power down (Ioff) Input type Standard CMOS Output type 3-State, Balanced CMOS, Push-Pull Rating HiRel Enhanced Product Operating temperature range (°C) -55 to 125
SSOP (DCT) 8 11.8 mm² 2.95 x 4
  • Available in the Texas Instruments NanoFree™ Package
  • Fully Configurable Dual-Rail Design Allows Each Port to
    Operate Over the Full 1.65-V to 5.5-V Power-Supply Range
  • VCC Isolation Feature – If Either VCC Input Is at GND,
    Both Ports Are in the High-Impedance State
  • DIR Input Circuit Referenced to VCCA
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Ioff Supports Partial-Power-Down Mode Operation
  • Max Data Rates
    • 420 Mbps (3.3-V to 5-V Translation)
    • 210 Mbps (Translate to 3.3 V)
    • 140 Mbps (Translate to 2.5 V)
    • 75 Mbps (Translate to 1.8 V)
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 4000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)
  • SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
    • Controlled Baseline
    • One Assembly/Test Site
    • One Fabrication Site
    • Available Temperature Ranges:
      • –55°C to 125°C
      • –55°C to 150°C
    • Extended Product Life Cycle
    • Extended Product-Change Notification
    • Product Traceability

NanoFree Is a trademark of Texas Instruments

  • Available in the Texas Instruments NanoFree™ Package
  • Fully Configurable Dual-Rail Design Allows Each Port to
    Operate Over the Full 1.65-V to 5.5-V Power-Supply Range
  • VCC Isolation Feature – If Either VCC Input Is at GND,
    Both Ports Are in the High-Impedance State
  • DIR Input Circuit Referenced to VCCA
  • Low Power Consumption, 10-µA Max ICC
  • ±24-mA Output Drive at 3.3 V
  • Ioff Supports Partial-Power-Down Mode Operation
  • Max Data Rates
    • 420 Mbps (3.3-V to 5-V Translation)
    • 210 Mbps (Translate to 3.3 V)
    • 140 Mbps (Translate to 2.5 V)
    • 75 Mbps (Translate to 1.8 V)
  • Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
  • ESD Protection Exceeds JESD 22
    • 4000-V Human-Body Model (A114-A)
    • 200-V Machine Model (A115-A)
    • 1000-V Charged-Device Model (C101)
  • SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
    • Controlled Baseline
    • One Assembly/Test Site
    • One Fabrication Site
    • Available Temperature Ranges:
      • –55°C to 125°C
      • –55°C to 150°C
    • Extended Product Life Cycle
    • Extended Product-Change Notification
    • Product Traceability

NanoFree Is a trademark of Texas Instruments

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVC2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74LVC2T45 is designed so that the DIR input circuit is supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, both ports are in the high-impedance state.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

This dual-bit noninverting bus transceiver uses two separate configurable power-supply rails. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.65 V to 5.5 V. The B port is designed to track VCCB. VCCB accepts any supply voltage from 1.65 V to 5.5 V. This allows for universal low-voltage bidirectional translation between any of the 1.8-V, 2.5-V, 3.3-V, and 5-V voltage nodes.

The SN74LVC2T45 is designed for asynchronous communication between two data buses. The logic levels of the direction-control (DIR) input activate either the B-port outputs or the A-port outputs. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated. The input circuitry on both A and B ports always is active and must have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.

The SN74LVC2T45 is designed so that the DIR input circuit is supplied by VCCA.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The VCC isolation feature ensures that if either VCC input is at GND, both ports are in the high-impedance state.

NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package.

Download View video with transcript Video

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 32
Type Title Date
* Data sheet Dual-Bit Dual-Supply Bus Tranceiver With Configurable Voltage Translation datasheet (Rev. C) 22 Jul 2010
* Radiation & reliability report SN74LVC2T45MDCTTEP Reliability Report 06 Sep 2013
Application note Schematic Checklist - A Guide to Designing with Auto-Bidirectional Translators PDF | HTML 12 Jul 2024
Application note Understanding Transient Drive Strength vs. DC Drive Strength in Level-Shifters (Rev. A) PDF | HTML 03 Jul 2024
Application note Implications of Slow or Floating CMOS Inputs (Rev. E) 26 Jul 2021
Application brief Voltage Translation for Rugged High Reliability Applications PDF | HTML 20 Jul 2021
Selection guide Voltage Translation Buying Guide (Rev. A) 15 Apr 2021
Selection guide Little Logic Guide 2018 (Rev. G) 06 Jul 2018
Selection guide Logic Guide (Rev. AB) 12 Jun 2017
Application note How to Select Little Logic (Rev. A) 26 Jul 2016
Application note Understanding and Interpreting Standard-Logic Data Sheets (Rev. C) 02 Dec 2015
User guide LOGIC Pocket Data Book (Rev. B) 16 Jan 2007
Product overview Design Summary for WCSP Little Logic (Rev. B) 04 Nov 2004
Application note Semiconductor Packing Material Electrostatic Discharge (ESD) Protection 08 Jul 2004
Application note Selecting the Right Level Translation Solution (Rev. A) 22 Jun 2004
User guide Signal Switch Data Book (Rev. A) 14 Nov 2003
Application note Use of the CMOS Unbuffered Inverter in Oscillator Circuits 06 Nov 2003
User guide LVC and LV Low-Voltage CMOS Logic Data Book (Rev. B) 18 Dec 2002
Application note Texas Instruments Little Logic Application Report 01 Nov 2002
Application note TI IBIS File Creation, Validation, and Distribution Processes 29 Aug 2002
More literature Standard Linear & Logic for PCs, Servers & Motherboards 13 Jun 2002
Application note 16-Bit Widebus Logic Families in 56-Ball, 0.65-mm Pitch Very Thin Fine-Pitch BGA (Rev. B) 22 May 2002
Application note Power-Up 3-State (PU3S) Circuits in TI Standard Logic Devices 10 May 2002
More literature STANDARD LINEAR AND LOGIC FOR DVD/VCD PLAYERS 27 Mar 2002
Application note Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices 01 Dec 1997
Application note Bus-Interface Devices With Output-Damping Resistors Or Reduced-Drive Outputs (Rev. A) 01 Aug 1997
Application note CMOS Power Consumption and CPD Calculation (Rev. B) 01 Jun 1997
Application note LVC Characterization Information 01 Dec 1996
Application note Input and Output Characteristics of Digital Integrated Circuits 01 Oct 1996
Application note Live Insertion 01 Oct 1996
Design guide Low-Voltage Logic (LVC) Designer's Guide 01 Sep 1996
Application note Understanding Advanced Bus-Interface Products Design Guide 01 May 1996

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Package Pins CAD symbols, footprints & 3D models
SSOP (DCT) 8 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos