TPS61221

ACTIVE

0.7-VIN, 3.3-V fixed output voltage boost converter with 5.5-μA quiescent current

Top

Product details

Parameters

Vin (Min) (V) 0.7 Vin (Max) (V) 5.5 Vout (Min) (V) 3.3 Vout (Max) (V) 3.3 Switch current limit (Typ) (A) 0.4 Regulated outputs (#) 1 Switching frequency (Min) (kHz) 500 Switching frequency (Max) (kHz) 2000 Iq (Typ) (mA) 0.005 Features Synchronous Rectification Duty cycle (Max) (%) 90 Operating temperature range (C) -40 to 85 Rating Catalog open-in-new Find other Boost converters (integrated switch)

Package | Pins | Size

SOT-SC70 (DCK) 6 4 mm² 2 x 2.1 open-in-new Find other Boost converters (integrated switch)

Features

  • Up to 95% Efficiency at Typical Operating
    Conditions
  • 5.5 µA Quiescent Current
  • Startup Into Load at 0.7 V Input Voltage
  • Operating Input Voltage from 0.7 V to 5.5 V
  • Pass-Through Function during Shutdown
  • Minimum Switching Current 200 mA
  • Protections:
    • Output Overvoltage
    • Overtemperature
    • Input Undervoltage Lockout
  • Adjustable Output Voltage from 1.8 V to 6 V
  • Fixed Output Voltage Versions
  • Small 6-pin SC-70 Package
open-in-new Find other Boost converters (integrated switch)

Description

The TPS6122x family devices provide a power-supply solution for products powered by either a single-cell, two-cell, or three-cell alkaline, NiCd or NiMH, or one-cell Li-Ion or Li-polymer battery. Possible output currents depend on the input-to-output voltage ratio. The boost converter is based on a hysteretic controller topology using synchronous rectification to obtain maximum efficiency at minimal quiescent currents. The output voltage of the adjustable version can be programmed by an external resistor divider, or is set internally to a fixed output voltage. The converter can be switched off by a featured enable pin. While being switched off, battery drain is minimized. The device is offered in a 6-pin SC-70 package (DCK) measuring 2 mm × 2 mm to enable small circuit layout size.

open-in-new Find other Boost converters (integrated switch)
Download
Similar products you might be interested in
open-in-new Compare products
Similar functionality to the compared device.
TPS610981 ACTIVE Low input voltage, 3.3-V output voltage, synchronous boost converter with integrated LDO For applications requiring ultra-low Iq or smaller package.

Technical documentation

star = Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 13
Type Title Date
* Data sheet TPS6122x Low Input Voltage, 0.7V Boost Converter With 5.5μA Quiescent Current datasheet (Rev. B) Nov. 11, 2014
Application note Performing Accurate PFM Mode Efficiency Measurements (Rev. A) Dec. 11, 2018
Selection guide Power Management Guide 2018 (Rev. R) Jun. 25, 2018
Application note Extending the Soft Start Time Without a Soft Start Pin (Rev. B) Jun. 15, 2017
Application note Five Steps to a Good PCB Layout of the Boost Converter May 03, 2016
Application note Accurately measuring efficiency of ultralow-IQ devices Jan. 22, 2014
Application note Basic Calculation of a Boost Converter's Power Stage (Rev. C) Jan. 08, 2014
Application note Automated Frequency Response Analyzer Oct. 09, 2013
Application note Design considerations for a resistive feedback divider in a DC/DC converter Apr. 26, 2012
White paper Power Management Solutions for Ultra-Low-Power 16-Bit MSP430 MCUs (Rev. D) Mar. 28, 2012
Application note IQ: What it is, what it isn’t, and how to use it Jun. 17, 2011
Application note Stellaris DCDC Converter Reference Design Aug. 03, 2009
Application note Minimizing Ringing at the Switch Node of a Boost Converter Sep. 15, 2006

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Hardware development

EVALUATION BOARD Download
document-generic User guide
49
Description

The TPS61220EVM-319 facilitates evaluation of the TPS61220 low input voltage boost converter.

Features
  • Up to 95% Efficiency
  • More than 80% Efficiency at Wide Area of Typical Operating Points
  • Ultra-Low Device Quiescent Current
  • Startup Under Load at 0.7V Input Voltage
  • Operating Input Voltage Range:0.7 V to 5.5 V
  • Pass-Through Function during Shutdown
  • Overvoltage Protection
  • Overtemperature Protection via Thermal (...)

Design tools & simulation

SIMULATION MODEL Download
SLVMAK2A.ZIP (79 KB) - PSpice Model
SIMULATION TOOL Download
PSpice® for TI design and simulation tool
PSPICE-FOR-TI — PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
Features
  • Leverages Cadence PSpice Technology
  • Preinstalled library with a suite of digital models to enable worst-case timing analysis
  • Dynamic updates ensure you have access to most current device models
  • Optimized for simulation speed without loss of accuracy
  • Supports simultaneous analysis of multiple products
  • (...)

Reference designs

REFERENCE DESIGNS Download
LP5910 and TPS61221 as Power Reference Design for devices Interacting with Ultra-Low Voltage MSP430
TIDA-00599 The MSP430X09X can operate form ultra-low voltages (ULV) in the range of 0.9V to 1.65V; however most of the devices in the system requires higher voltages. TIDA-00599 provides a solution for those companion devices that requires 1.8V and 3.3V input voltages.

A 3.3V voltage rail is generated from a (...)

document-generic Schematic document-generic User guide

CAD/CAE symbols

Package Pins Download
SC70 (DCK) 6 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos