SNVSAU8A June   2017  – February 2024 TPS549B22

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 25-A FET
      2. 6.3.2 On-Resistance
      3. 6.3.3 Package Size, Efficiency and Thermal Performance
      4. 6.3.4 Soft-Start Operation
      5. 6.3.5 VDD Supply Undervoltage Lockout (UVLO) Protection
      6. 6.3.6 EN_UVLO Pin Functionality
      7. 6.3.7 Fault Protections
        1. 6.3.7.1 Current Limit (ILIM) Functionality
        2. 6.3.7.2 VDD Undervoltage Lockout (UVLO)
        3. 6.3.7.3 Overvoltage Protection (OVP) and Undervoltage Protection (UVP)
        4. 6.3.7.4 Out-of-Bounds Operation
        5. 6.3.7.5 Overtemperature Protection
    4. 6.4 Device Functional Modes
      1. 6.4.1 D-CAP3™ Control Mode Topology
      2. 6.4.2 DCAP Control Topology
    5. 6.5 Programming
      1. 6.5.1 Programmable Pin-Strap Settings
        1. 6.5.1.1 Address Selection (ADDR) Pin
        2. 6.5.1.2 VSEL Pin
        3. 6.5.1.3 D-CAP3™ Control Mode Selection
        4. 6.5.1.4 Application Workaround to Support 4-ms and 8-ms SS Settings
      2. 6.5.2 Programmable Analog Configurations
        1. 6.5.2.1 RSP/RSN Remote Sensing Functionality
          1. 6.5.2.1.1 Output Differential Remote Sensing Amplifier
        2. 6.5.2.2 Power Good (PGOOD Pin) Functionality
      3. 6.5.3 PMBus Programming
        1. 6.5.3.1 TPS549B22 Limitations to the PMBUS Specifications
        2. 6.5.3.2 Target Address Assignment
        3. 6.5.3.3 PMBUS Address Selection
        4. 6.5.3.4 Supported Formats
          1. 6.5.3.4.1 Direct Format — Write
          2. 6.5.3.4.2 Combined Format — Read
        5. 6.5.3.5 Stop Separated Reads
        6. 6.5.3.6 Supported PMBUS Commands and Registers
  8. Register Maps
    1. 7.1  OPERATION Register (address = 1h)
    2. 7.2  ON_OFF_CONFIG Register (address = 2h)
    3. 7.3  CLEAR FAULTS (address = 3h)
    4. 7.4  WRITE PROTECT (address = 10h)
    5. 7.5  STORE_DEFAULT_ALL (address = 11h)
    6. 7.6  RESTORE_DEFAULT_ALL (address = 12h)
    7. 7.7  CAPABILITY (address = 19h)
    8. 7.8  VOUT_MODE (address = 20h)
    9. 7.9  VOUT_COMMAND (address = 21h)
    10. 7.10 VOUT_MARGIN_HIGH (address = 25h) ®
    11. 7.11 VOUT_MARGIN_LOW (address = 26h)
    12. 7.12 STATUS_BYTE (address = 78h)
    13. 7.13 STATUS_WORD (High Byte) (address = 79h)
    14. 7.14 STATUS_VOUT (address = 7Ah)
    15. 7.15 STATUS_IOUT (address = 7Bh)
    16. 7.16 STATUS_CML (address = 7Eh)
    17. 7.17 MFR_SPECIFIC_00 (address = D0h)
    18. 7.18 MFR_SPECIFIC_01 (address = D1h)
    19. 7.19 MFR_SPECIFIC_02 (address = D2h)
    20. 7.20 MFR_SPECIFIC_03 (address = D3h)
    21. 7.21 MFR_SPECIFIC_04 (address = D4h)
    22. 7.22 MFR_SPECIFIC_06 (address = D6h)
    23. 7.23 MFR_SPECIFIC_07 (address = D7h)
    24. 7.24 MFR_SPECIFIC_44 (address = FCh)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 TPS549B22 1.5-V to 18-V Input, 1-V Output, 25-A Converter
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1  Custom Design With WEBENCH® Tools
        2. 8.2.3.2  Switching Frequency Selection
        3. 8.2.3.3  Inductor Selection
        4. 8.2.3.4  Output Capacitor Selection
          1. 8.2.3.4.1 Minimum Output Capacitance to Make Sure of Stability
          2. 8.2.3.4.2 Response to a Load Transient
          3. 8.2.3.4.3 Output Voltage Ripple
        5. 8.2.3.5  Input Capacitor Selection
        6. 8.2.3.6  Bootstrap Capacitor Selection
        7. 8.2.3.7  BP Pin
        8. 8.2.3.8  R-C Snubber and VIN Pin High-Frequency Bypass
        9. 8.2.3.9  Optimize Reference Voltage (VSEL)
        10. 8.2.3.10 MODE Pin Selection
        11. 8.2.3.11 ADDR Pin Selection
        12. 8.2.3.12 Overcurrent Limit Design
      4. 8.2.4 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
      3. 8.4.3 Mounting and Thermal Profile Recommendation
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RVF|40
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

GUID-DB640CF8-6CDE-408C-8FCD-B71A26AC9023-low.gif
VOUT = 1 VVDD = VINSKIP Mode
fSW = 650 kHz
Figure 5-1 Efficiency vs Output Current
GUID-35AFC233-4879-44A1-B02D-D93976266C00-low.gif
VOUT = 1 VVDD= VINSKIP Mode
fSW = 650 kHz
Figure 5-3 Converter Power Loss vs Output Current
GUID-0D446C96-C894-4DBF-AF99-69DC0F2BB494-low.gif
VDD = VINfSW = 650 kHzSKIP Mode
VOUT = 2.5 VL= 820 nH, 0.9 mΩ
Figure 5-5 Efficiency vs Output Current
GUID-85743637-6BFF-4C1F-B77F-B5E85A859AEC-low.gif
VOUT = 1 VVDD = VINFCCM Mode
fSW = 650 kHz
Figure 5-2 Efficiency vs Output Current
GUID-F20575D1-37CF-444D-83DB-57C41D6AC2BB-low.gif
VOUT = 1 VVDD = VINFCCM Mode
fSW = 650 kHz
Figure 5-4 Output Voltage Regulation vs Output Current
GUID-3767EB15-E3C0-41ED-BC6D-0D5AFBF9BD63-low.gif
VDD = VINfSW = 650 kHzSKIP Mode
VOUT = 2.5 VL= 820 nH, 0.9 mΩ
Figure 5-6 Output Voltage Regulation vs Output Current
GUID-44B5683D-3853-4D5C-BAC7-C129164399C3-low.gif
VDD = VINfSW = 650 kHzFCCM Mode
VOUT = 5 VL= 820 nH, 0.9 mΩ
Figure 5-7 Efficiency vs Output Current
GUID-E05697A3-96D8-4AAC-844A-01099D55D9D2-low.png
VDD = VIN = 12 V fSW = 650 kHz IOUT = 25 A
VOUT = 1 V Natural convection at room temperature
Figure 5-9 Thermal Image
GUID-F30CB688-D4B8-4762-9AF2-BCDC0596E21C-low.png
VDD = VIN = 12 V fSW = 650 kHz IOUT = 25 A
VOUT = 2.5 V Natural convection at room temperature
Figure 5-11 Thermal Image
GUID-03948537-550E-49B6-9C7C-4EB6217ECC1A-low.gif
VDD = VINfSW = 650 kHzFCCM Mode
VOUT = 5 VL= 820 nH, 0.9 mΩ
Figure 5-8 Power Loss vs Output Current
GUID-D4054304-FEAA-41CE-8B9E-1F22668CE140-low.png
VDD = VIN = 12 V fSW = 650 kHz IOUT = 25 A
VOUT = 1 V Natural convection at room temperature
Figure 5-10 Thermal Image
GUID-F67AD7F3-B29D-4D4C-8269-87638124CA67-low.png
VDD = VIN = 12 V fSW = 650 kHz IOUT = 25 A
VOUT = 5 V Natural convection at room temperature
Figure 5-12 Thermal Image
GUID-6FD53BD3-0B32-4FC0-81AB-5A15EF123CBB-low.gifFigure 5-13 PMBus 1-MHz Bus Speed with 1.8-V Pullup
GUID-EB9292DF-20DF-4860-B137-03B845C14829-low.gif
1 – Operation only 4 – VOUT Command up to 1.2 V
2 – Turnoff 5 – VOUT Command down to 0.6 V
3 – Turnon without Margin 6 – Turnoff
Figure 5-15 6 Sequenced Events – I2C Write/Read
GUID-15CD13B3-B74D-4F89-8826-CFD18A2A9A16-low.gif
1 – Operation only 4 – 16 VOUT Command up to 1.2 V,
2 – Turnoff 50 mV per step down to 0.6 V
3 – Turnon without Margin 17 – Turnoff
Figure 5-17 17 Sequenced Events – I2C Write
GUID-BB5EEDB8-3335-4A1B-B87A-A293F73D823C-low.gif
1 – Operation only 4 – 16 VOUT Command up to 1.2 V,
2 – Turnoff 50 mV per step down to 0.6 V
3 – Turnon without Margin 17 – Turnoff
Figure 5-19 17 Sequenced Events – I2C Write/Read with PEC
GUID-9EFF8110-5B34-4133-A690-D48170ADDFFF-low.gif
1 – Operation only4 – 16 VOUT Command up to 1.2 V, 50 mV per step down to 0.6 V
2 – Turnoff17 – 28 Vout Command from 0.6 V to 1.2 V, 50 mV per step
3 – Turnon without Margin29 – Turnoff
Figure 5-21 29 Sequenced Events – I2C Write/Read
GUID-FC7AC31D-64AD-4956-84B9-C47DE6E6A097-low.gif
1 – Operation only 4 – VOUT Command up to 1.2 V
2 – Turnoff 5 – VOUT Command down to 0.6 V
3 – Turnon without Margin 6 – Turnoff
Figure 5-14 6 Sequenced Events – I2C Write
GUID-0B6F80EB-D596-4CCC-A6EA-5491396980E9-low.gif
1 – Operation only 4 – VOUT Command up to 1.2 V
2 – Turnoff 5 – VOUT Command down to 0.6 V
3 – Turnon without Margin 6 – Turnoff
Figure 5-16 6 Sequenced Events – I2C Write/Read with PEC
GUID-F5066779-FEE3-4F30-ADF4-DB1A6CD19D21-low.gif
1 – Operation only 4 – 16 VOUT Command up to 1.2 V,
2 – Turnoff 50 mV per step down to 0.6 V
3 – Turnon without Margin 17 – Turnoff
Figure 5-18 17 Sequenced Events – I2C Write/Read
GUID-18B00619-A75A-41C2-84EF-B74A1172B830-low.gif
1 – Operation only4 – 16 VOUT Command up to 1.2 V,
2 – Turnoff50 mV per step down to 0.6 V
3 – Turnon without Margin17 – 28 VOUT Command from 0.6 V to 1.2 V, 50 mV per step
29 – Turnoff
Figure 5-20 29 Sequenced Events – I2C Write
GUID-486773E3-A793-4E98-AA50-424EC171D487-low.gif
1 – Operation only4 – 16 Vout Command up to 1.2 V,
2 – Turnoff50 mV per step down to 0.6 V
3 – Turnon without Margin17 – 28 Vout Command from 0.6 V to 1.2 V, 50 mV per step
29 – Turnoff
Figure 5-22 29 Sequenced Events – I2C Write/Read with PEC