JAJU802A January   2022  – October 2022

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 TMS320F280025C
      3. 2.3.3 TMS320F280039C
      4. 2.3.4 UCC28740
      5. 2.3.5 UCC27517
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV76733
    4. 2.4 System Design Theory
      1. 2.4.1 Interleaved PFC
        1. 2.4.1.1 Full Bridge Diode Rectifier Rating
        2. 2.4.1.2 Inductor Ratings
        3. 2.4.1.3 AC Voltage Sensing
        4. 2.4.1.4 DC Link Voltage Sensing
        5. 2.4.1.5 Bus Current Sensing
        6. 2.4.1.6 DC Link Capacitor Rating
        7. 2.4.1.7 MOSFET Ratings
        8. 2.4.1.8 Diode Ratings
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field Oriented Control of PM Synchronous Motor
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer with Phase Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation with PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Compressor Drive with Automatic Vibration Compensation
        5. 2.4.2.5 Fan Drive with Flying Start
        6. 2.4.2.6 Hardware Prerequisites for Motor Drive
          1. 2.4.2.6.1 Motor Current Feedback
            1. 2.4.2.6.1.1 Current Sensing with Three-Shunt
            2. 2.4.2.6.1.2 Current Sensing with Single-Shunt
          2. 2.4.2.6.2 Motor Voltage Feedback
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
      4. 3.1.4 Test Setup
    2. 3.2 Getting Started Firmware
      1. 3.2.1 Download and Install Software Required for Board Test
      2. 3.2.2 Opening Project Inside CCS
      3. 3.2.3 Project Structure
    3. 3.3 Test Procedure
      1. 3.3.1 Build Level 1: CPU and Board Setup
        1. 3.3.1.1 Start CCS and Open Project
        2. 3.3.1.2 Build and Load Project
        3. 3.3.1.3 Setup Debug Environment Windows
        4. 3.3.1.4 Run the Code
      2. 3.3.2 Build Level 2: Open Loop Check with ADC Feedback
        1. 3.3.2.1 Start CCS and Open Project
        2. 3.3.2.2 Build and Load Project
        3. 3.3.2.3 Setup Debug Environment Windows
        4. 3.3.2.4 Run the Code
      3. 3.3.3 Build Level 3: Closed Current Loop Check
        1. 3.3.3.1 Start CCS and Open Project
        2. 3.3.3.2 Build and Load Project
        3. 3.3.3.3 Setup Debug Environment Windows
        4. 3.3.3.4 Run the Code
      4. 3.3.4 Build Level 4: Full PFC and Motor Drive Control
        1. 3.3.4.1  Start CCS and Open Project
        2. 3.3.4.2  Build and Load Project
        3. 3.3.4.3  Setup Debug Environment Windows
        4. 3.3.4.4  Run the Code
        5. 3.3.4.5  Run the System
        6. 3.3.4.6  Tuning Motor Drive FOC Parameters
        7. 3.3.4.7  Tuning PFC Parameters
        8. 3.3.4.8  Tuning Field Weakening and MTPA Control Parameters
        9. 3.3.4.9  Tuning Flying Start Control Parameters
        10. 3.3.4.10 Tuning Vibration Compensation Parameters
        11. 3.3.4.11 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1 Performance Data and Curves
      2. 3.4.2 Functional Waveforms
      3. 3.4.3 Transient Waveforms
      4. 3.4.4 MCU CPU Load, Memory and Peripherals Usage
        1. 3.4.4.1 CPU Load for Full Implementation
        2. 3.4.4.2 Memory Usage
        3. 3.4.4.3 Peripherals Usage
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
      5. 3.5.5 Setup PFC Control Parameters
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 Altium Project
      4. 4.1.4 Gerber Files
      5. 4.1.5 PCB Layout Guidelines
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 サポート・リソース
    5. 4.5 Trademarks
  10. 5Terminology
  11. 6Revision History

Run the Code

  1. Set the AC source output to 0 V at 50/60Hz, turn on the AC power supply, slowly increase the input voltage from 0-V to 110-V AC.
  2. Run the project by clicking on button , or click RunResume in the Debug tab. The systemVars.flagEnableSystem should be set to '1' after a fixed time, that means the offsets calibration have been done and the power relay for inrush is turned on. The fault flags for dual motor and PFC (motorVars[0].faultMtrUse.all, motorVars[1].faultMtrUse.all, and pfcVars.faultPFCUse.all) should be equal to '0' , if not, the user have to check the current and voltage sensing circuit as described in Section 3.3.1.
  3. To verify current closed-loop control for motor_1, set the variable motorVars[0].flagEnableRunAndIdentify to '1' in the Expressions window as shown in Figure 3-20. The motor_1 should run with a closed-loop control using the angle from the angle generator at a setting speed in the variable motorVars[0].speedRef_Hz, check the value of motorVars[0].speed_Hz in Expressions window, both variables value should be very close.
  4. Connect oscilloscope probes to the DAC output and motor phase line to probe the angle, current signals, the current and angle waveforms on the oscilloscope appear as shown in Figure 3-21. Change the Idq_set_A[0].value[1] in the Expressions window, the motor phase current should be increasing accordingly.
  5. If the motor can not run with current-closed loop and appear a overcurrent fault, check if the sign of adcData[0].current_sf and the value of userParams[0].current_sf are set correctly according to the hardware board.
  6. Follow the steps 3, 4 and 5 using the same approach to test the hardware for motor_2 by setting the variable motorVars[1].flagEnableRunAndIdentify to '1' and tune Idq_set_A[1].value[1] to spin the motor.
  7. To verify the current closed-loop for PFC by setting the pfcVars.flagEnablePFC to "1", connect the probes to the output of the DAC to the sampling current and voltage, use a high voltage probe and current probe to detect the AC input voltage and current, the voltage and current waveform are shown in Figure 3-22.
  8. Check the variables pfcVars.VdcBus_V, pfcVars.VacRms_V, and pfcVars.FreqAc_Hz in Expressions window, the values of these variables should be the same as the setting value of the AC source or measured by a multimeter.
  9. Increase pfcVars.IdcRef from 0.0 to 0.05 very slowly, the output voltage should increase accordingly. Keep increasing pfcVars.IdcRef in increments of 0.01 until pfcVars.IdcRef is increased to a value of 0.1. The sensing current value pfcVars.IacSen can change rapidly and is not the same as the pfcVars.IdcRef value. This change is because pfcVars.IacSen is the instantaneous input current value while pfcVars.IdcRef is the amplitude reference for the current command.
  10. The controller can now be halted before setting the motorVars[0].flagEnableRunAndIdentify, motorVars[1].flagEnableRunAndIdentify and pfcVars.flagEnablePFC to "0", and the debug connection terminated. Fully halting the controller by first clicking the Halt button on the toolbar or by clicking TargetHalt. Finally, reset the controller by clicking on or clicking RunReset.
  11. Close CCS debug session by clicking on Terminate Debug Session or clicking RunTerminate.
Figure 3-20 Build Level 3: Expressions Window at Run Time
Figure 3-21 Build Level 3: Rotor Angle, Phase Current of Motor
Figure 3-22 Build Level 3: AC Voltage, Current of PFC