TPS63050

ACTIVE

TPS6305x Single Inductor Buck-Boost with 1-A Switches and Adjustable Soft Start

Product details

Rating Catalog Operating temperature range (°C) -40 to 125 Topology Buck-Boost Type Converter Vin (min) (V) 2.5 Vin (max) (V) 5.5 Switching frequency (min) (kHz) 2500 Switching frequency (max) (kHz) 2500 Features Adjustable current limit, Enable, Light Load Efficiency, Load Disconnect, Power good, Synchronous Rectification, UVLO Fixed Vout (min) (V) 2.5 Vout (max) (V) 5.5 Iq (typ) (µA) 43 Duty cycle (max) (%) 100 Switch current limit (typ) (A) 1
Rating Catalog Operating temperature range (°C) -40 to 125 Topology Buck-Boost Type Converter Vin (min) (V) 2.5 Vin (max) (V) 5.5 Switching frequency (min) (kHz) 2500 Switching frequency (max) (kHz) 2500 Features Adjustable current limit, Enable, Light Load Efficiency, Load Disconnect, Power good, Synchronous Rectification, UVLO Fixed Vout (min) (V) 2.5 Vout (max) (V) 5.5 Iq (typ) (µA) 43 Duty cycle (max) (%) 100 Switch current limit (typ) (A) 1
DSBGA (YFF) 12 2.52000000000000018 mm² 1.4000000000000001 x 1.8 VQFN-HR (RMW) 12 6.25 mm² 2.5 x 2.5
  • Real buck or boost with seamless transition between buck and boost mode
  • 2.5 V to 5.5 V Input voltage range
  • 0.5-A Continuous output current: VIN ≥ 2.5 V,
    VOUT = 3.3 V
  • Adjustable and fixed output voltage version
  • Efficiency > 90% in boost mode and > 95% in buck mode
  • 2.5-MHz Typical switching frequency
  • Adjustable average input current limit
  • Adjustable soft-start time
  • Device quiescent current < 60 µA
  • Automatic power save mode or forced PWM mode
  • Load disconnect during shutdown
  • Overtemperature protection
  • Small 1.6mm x 1.2mm, 12-pin WCSP and 2.5mm x 2.5mm 12-pin HotRod™ QFN package
  • Create a custom design using the:
  • Real buck or boost with seamless transition between buck and boost mode
  • 2.5 V to 5.5 V Input voltage range
  • 0.5-A Continuous output current: VIN ≥ 2.5 V,
    VOUT = 3.3 V
  • Adjustable and fixed output voltage version
  • Efficiency > 90% in boost mode and > 95% in buck mode
  • 2.5-MHz Typical switching frequency
  • Adjustable average input current limit
  • Adjustable soft-start time
  • Device quiescent current < 60 µA
  • Automatic power save mode or forced PWM mode
  • Load disconnect during shutdown
  • Overtemperature protection
  • Small 1.6mm x 1.2mm, 12-pin WCSP and 2.5mm x 2.5mm 12-pin HotRod™ QFN package
  • Create a custom design using the:

The TPS6305x family of devices is a high efficiency, low quiescent-current buck-boost converter, suitable for applications where the input voltage is higher or lower than the output.

Continuous output current can go as high as 500 mA in boost mode and as high as 1 A in buck mode. The maximum average current in the switches is limited to a typical value of 1 A. The TPS6305x family of devices regulate the output voltage over the complete input voltage range by automatically switching between buck or boost mode depending on the input voltage, ensuring seamless transition between modes.

The buck-boost converter is based on a fixed-frequency, pulse-width-modulation (PWM) controller using synchronous rectification to obtain the highest efficiency. At low load currents, the converter enters Power Save Mode to maintain high efficiency over the complete load current range.

The PFM/PWM pin allows the user to select between automatic-PFM/PWM mode operation and forced-PWM operation. During PWM mode a fixed-frequency of typically 2.5 MHz is used. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is disconnected from the battery. The device is packaged in a 12-pin DSBGA and in a 12-pin HotRod package.

The TPS6305x family of devices is a high efficiency, low quiescent-current buck-boost converter, suitable for applications where the input voltage is higher or lower than the output.

Continuous output current can go as high as 500 mA in boost mode and as high as 1 A in buck mode. The maximum average current in the switches is limited to a typical value of 1 A. The TPS6305x family of devices regulate the output voltage over the complete input voltage range by automatically switching between buck or boost mode depending on the input voltage, ensuring seamless transition between modes.

The buck-boost converter is based on a fixed-frequency, pulse-width-modulation (PWM) controller using synchronous rectification to obtain the highest efficiency. At low load currents, the converter enters Power Save Mode to maintain high efficiency over the complete load current range.

The PFM/PWM pin allows the user to select between automatic-PFM/PWM mode operation and forced-PWM operation. During PWM mode a fixed-frequency of typically 2.5 MHz is used. The output voltage is programmable using an external resistor divider, or is fixed internally on the chip. The converter can be disabled to minimize battery drain. During shutdown, the load is disconnected from the battery. The device is packaged in a 12-pin DSBGA and in a 12-pin HotRod package.

Download View video with transcript Video

Similar products you might be interested in

open-in-new Compare alternates
Same functionality with different pin-out to the compared device
TPS631010 ACTIVE 3-A peak current high-efficiency ultra-small solution size buck-boost converter Upgraded product with 8-µA IQ and smaller WCSP package
Similar functionality to the compared device
TPS63030 ACTIVE High Efficient Single Inductor Buck-Boost Converter with 1-A Switches Extended input voltage range (down to 1.8 V).
TPS631000 ACTIVE 1.5-A output current, high-power-density buck-boost converter Upgraded product with 8-uA IQ and smaller SOT package.

Technical documentation

star =Top documentation for this product selected by TI
No results found. Please clear your search and try again.
View all 23
Type Title Date
* Data sheet TPS6305x Single Inductor Buck-Boost With 1-A Switches and Adjustable Soft Start datasheet (Rev. D) PDF | HTML 11 May 2017
Application note QFN and SON PCB Attachment (Rev. C) PDF | HTML 06 Dec 2023
Application note 4스위치 벅 부스트 전력 단계의 기본 계산 (Rev. C) PDF | HTML 02 Oct 2023
Application note Different Methods to Drive LEDs Using TPS63XXX Buck-Boost Converters (Rev. D) 04 Aug 2021
Application note A Topical Index of TI Low-Power Buck-Boost Converter Application Notes (Rev. A) PDF | HTML 09 Jun 2021
Application note Layer Design for Reducing Radiated EMI of DC to DC Buck-Boost Converters (Rev. A) PDF | HTML 09 Jun 2021
Application note Improving Load Transient Response for Controlled Loads 12 Sep 2019
Application brief Buck-boost Converter Battery Life Time Estimation for Wireless Network Cameras (Rev. A) 28 May 2019
Application brief Buck-Boost Converters Solving Power Challenges in Optical Modules 13 May 2019
Application note Performing Accurate PFM Mode Efficiency Measurements (Rev. A) 11 Dec 2018
Application note Understanding Undervoltage Lockout in Power Devices (Rev. A) 19 Sep 2018
Application note Basic Calculations of a 4 Switch Buck-Boost Power Stage (Rev. B) 09 Jul 2018
Selection guide Power Management Guide 2018 (Rev. R) 25 Jun 2018
Application note High Efficiency Battery Powered High Brightness LED Driver Using the TPS63000 31 Mar 2016
Technical article Small, efficient buck-boost for portable industrial equipment PDF | HTML 02 Dec 2015
EVM User's guide User's Guide for TPS63050EVM-679 13 Jul 2015
EVM User's guide User's Guide for TPS63050EVM-180 12 Jul 2013
Application note Extending the Soft Start Time in the TPS63010 Buck-Boost Converter 05 Dec 2012
Analog Design Journal Design considerations for a resistive feedback divider in a DC/DC converter 26 Apr 2012
Application note Choosing an Appropriate Pull-up/Pull-down Resistor for Open Drain Outputs 19 Sep 2011
Analog Design Journal IQ: What it is, what it isn’t, and how to use it 17 Jun 2011
Application note Minimizing Ringing at the Switch Node of a Boost Converter 15 Sep 2006
Application note Dynamically Adjustable Output Using the TPS63000 15 Aug 2006

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

TPS63050EVM-180 — TPS63050 DSBGA Buck-Boost Regulator Evaluation Module

The TPS63050EVM-180 is a customer evaluation module for the TPS63050. The TPS63050 is a small 1.6mm by 1.2mm, WCSP package buck-boost regulator with 1A switches. This EVM is set to an output voltage of 3.3V. Being a buck-boost the input voltage may vary from 2.5V to 5.5V while the EVM maintains the (...)

User guide: PDF
Not available on TI.com
Evaluation board

TPS63050EVM-679 — TPS63050 QFN Buck-Boost Regulator Evaluation Module

The TPS63050EVM-679 is a customer evaluation module for the TPS63050. The TPS63050 is a small 2.5mm by 2.5mm, RMW package buck-boost regulator with 1A switches. This EVM is set to an output voltage of 3.3V. Being a buck-boost, the input voltage may vary from 2.5V to 5.5V while the EVM maintains the (...)

User guide: PDF
Not available on TI.com
Simulation model

Unencrypted TPS63050 PSpice Transient Model Package (Rev. B)

SLVM997B.ZIP (87 KB) - PSpice Model
Calculation tool

SLVC808 Battery Lifetime Estimator

Supported products & hardware

Supported products & hardware

Products
AC/DC & DC/DC converters (integrated FET)
TPS63000 High efficiency Buck-Boost Converter with 1.8A Current Switches in 3x3 QFN TPS63000-Q1 Automotive 1.8V to 5.5V Input Range, 1.8A High Efficiency Buck/Boost Converter TPS63001 96% Buck-Boost Converter with 1.7A Current Switches, 3.3V fixed Output voltage in 3x3 QFN TPS63002 96% Buck-Boost Converter with 1.7A Current Switches, 5V fixed Output voltage in 3x3 QFN TPS63010 High Efficient Single Inductor Buck-Boost Converter with 2-A Switches TPS63011 High Efficient Single Inductor Buck-Boost Converter with 2-A Switches TPS63012 High Efficient Single Inductor Buck-Boost Converter with 2-A Switches TPS63020 High Efficiency Single Inductor Buck-Boost Converter with 4A Switch TPS63020-Q1 High Efficiency Automotive Single Inductor Buck-Boost Converter with 4A Switch TPS63021 High Efficiency Single Inductor Buck-Boost Converter with 4A Switch TPS63024 High Efficiency 1.5A Single Inductor Buck-Boost Converter TPS630241 High Efficiency 1.5A Single Inductor Buck-Boost Converter TPS630242 High Efficiency 1.5A Single Inductor Buck-Boost Converter TPS630250 4-A switch single-inductor buck-boost converter in 3.7 mm² DSBGA package TPS630251 4A switch Single-Inductor Buck-Boost Converter in WCSP TPS630252 4A switch Single-Inductor Buck-Boost Converter in WCSP TPS63027 High Efficiency 4.5A Switch Single-Inductor Buck-Boost Converter TPS63030 High Efficient Single Inductor Buck-Boost Converter with 1-A Switches TPS63031 High Efficient Single Inductor Buck-Boost Converter with 1-A Switches TPS63036 High Efficient Single Inductor Buck-Boost Converter with 1-A Switches TPS63050 TPS6305x Single Inductor Buck-Boost with 1-A Switches and Adjustable Soft Start TPS63051 Tiny Single Inductor Buck Boost Converter TPS63060 2.5V to 12V input voltage, 93% Efficient, 2.25A Switch Current Limit, Buck-Boost Converter TPS63060-EP HIGH INPUT VOLTAGE BUCK-BOOST CONVERTER WITH 2-A SWITCH CURRENT TPS63061 2.5V to 12V input voltage, 93% Efficient, 2.25A Switch Current Limit, Buck-Boost Converter TPS63070 Wide input voltage (2V-16V) buck-boost converter TPS63700 Adjustable, -15V Output Inverting DC/DC Converter in 3x3 QFN TPS63710 Low Noise, 1A Synchronous Inverting Buck Converter in 3x3 WSON Package TPS63802 2-A, high-efficient, 11-µA quiescent current buck-boost converter in QFN/DFN package TPS63805 2-A, high-efficient, 11-µA quiescent current buck-boost converter with tiny solution size TPS63806 2.5-A high-efficient buck-boost converter with optimized load step response in tiny WCSP TPS63807 2A,11-uA quiescent current buck-boost converter TPS63810 2.5-A high-efficient buck-boost converter with I²C interface for dynamic voltage scaling TPS63811 2.5-A high-efficient buck-boost converter with I²C interface for dynamic voltage scaling TPS63900 1.8-V to 5.5-V, 75-nA IQ buck-boost converter with input current limit and Dynamic Voltage Scaling
Gerber file

TPS6305x EVM Gerbers

SLVC501.ZIP (317 KB)
Reference designs

TIDA-00725 — Wide Bandwidth Optical Front-end Reference Design

This reference design implements and measures a complete 120MHz wide bandwidth optical front end comprising a high speed transimpedance amplifier, fully differential amplifier, and high speed 14-bit 160MSPS ADC with JESD204B interface.  Hardware and software are provided to evaluate the (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00886 — Low Power RF PLL-Synthesizer Operating From a Single Cell Battery Reference Design

The TIDA-00886 consists of the LMX2571,  high-performance, wideband PLLatinum™ low-power RF synthesizer, powered by a single cell battery using TPS63050 a DC-DC buck-boost converter.  The TIDA-00886 shows that the DC-DC buck-boost converter has a small to negligible effect on (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00823 — 16-Bit 1-GSPS Digitizer Reference Design with AC and DC Coupled Fixed Gain Amplifier

This reference design discusses the use and performance of the Ultra-Wideband, Fixed-gain high-speed amplifier, the LMH3401 to drive the high-speed analog-to-digital converter (ADC), the ADS54J60 device. Different options for common-mode voltages, power supplies, and interfaces are discussed and (...)
Design guide: PDF
Schematic: PDF
Reference designs

TIDA-00822 — 16-Bit 1-GSPS Digitizer Reference Design with AC and DC Coupled Variable Gain Amplifier

This reference design discusses the use and performance of the Digital Variable-Gain high-speed amplifier, the LMH6401, to drive the high-speed analog-to-digital converter (ADC), the ADS54J60 device. Different options for common-mode voltages, power supplies, and interfaces are discussed and (...)
Design guide: PDF
Schematic: PDF
Package Pins CAD symbols, footprints & 3D models
DSBGA (YFF) 12 Ultra Librarian
VQFN-HR (RMW) 12 Ultra Librarian

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring
Information included:
  • Fab location
  • Assembly location

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos