SLUSCS3J October   2017  – December 2022 BQ2980 , BQ2982

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
      1. 8.1.1 Device Configurability
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Overvoltage (OV) Status
      2. 8.3.2 Undervoltage (UV) Status
      3. 8.3.3 Overcurrent in Charge (OCC) Status
      4. 8.3.4 Overcurrent in Discharge (OCD) and Short Circuit in Discharge (SCD) Status
      5. 8.3.5 Overtemperature (OT) Status
      6. 8.3.6 Charge and Discharge Driver
      7. 8.3.7 CTR for FET Override and Device Shutdown
      8. 8.3.8 CTR for PTC Connection
      9. 8.3.9 ZVCHG (0-V Charging)
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power Modes
        1. 8.4.1.1 Power-On-Reset (POR)
        2. 8.4.1.2 NORMAL Mode
        3. 8.4.1.3 FAULT Mode
        4. 8.4.1.4 SHUTDOWN Mode
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Test Circuits for Device Evaluation
      2. 9.1.2 Test Circuit Diagrams
      3. 9.1.3 Using CTR as FET Driver On/Off Control
    2. 9.2 Typical Applications
      1. 9.2.1 BQ298x Configuration 1: System-Controlled Reset/Shutdown Function
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Selection of Power FET
        4. 9.2.1.4 Application Curves
      2. 9.2.2 BQ298x Configuration 2: CTR Function Disabled
      3. 9.2.3 BQ298x Configuration 3: PTC Thermistor Protection
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

CTR for PTC Connection

If any of the CTR pull-up resistors are selected, the device assumes a PTC is connected to the CTR pin. There are three internal pull-up options: 1.5 MΩ, 5 MΩ, or 8 MΩ. The internal pull-up allows a PTC to be connected between the CTR pin and VSS. This turns the CTR pin to detect an overtemperature fault through an external PTC, as shown in Figure 8-4.

GUID-2FA04C2E-E4D6-4A13-8F89-355E97BD5AFD-low.gifFigure 8-4 Connecting PTC to CTR Pin for Overtemperature Protection

When any of the CTR internal pull-up resistors are selected (factory configured), an active-high signal (VCTR > CTR VIH) on CTR turns off both CHG and DSG outputs, but it does not shut down the device.

As temperature goes up, the PTC resistance increases and when the voltage divided by the internal RPULL_UP and the RPTC is > CTR VIH, the CHG and DSG outputs are turned off. As temperature falls and the PTC resistance decreases, the CHG and DSG outputs turn back on when (VCTR < CTR VIL).